

Making Cancer History

Prostate Cancer Assorted Mortality Statistics John W. Davis, MD, FACS

Annals of Internal Medicine

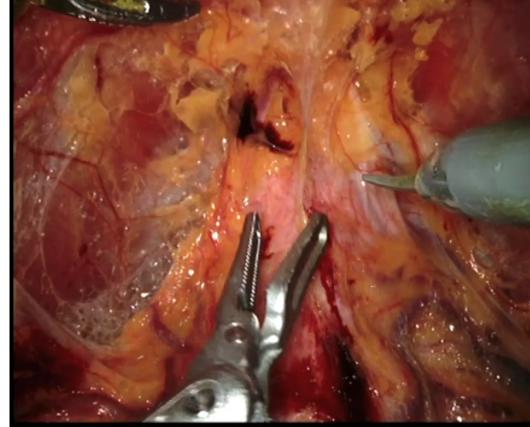
Clinical Guideline

Screening for Prostate Cancer: U.S. Preventive Services Task Force Recommendation Statement Ann Intern Med. 2012;157.

Virginia A. Moyer, MD, MPH, on behalf of the U.S. Preventive Services Task Force*

www.USPreventiveServicesTaskForce.org

Annals of Internal Medicine


SCREENING FOR PROSTATE CANCER

CLINICAL SUMMARY OF U.S. PREVENTIVE SERVICES TASK FORCE RECOMMENDATION

Population	Adult Males
Recommendation	Do not use prostate-specific antigen (PSA)-based screening for prostate cancer.
	Grade: D

Up Close: Just Right

- 46 y/o with Family history of PCa
- Multi-core GS 3+4 and 3+3
- Favorable MRI
- Significant delay—fear of side effects, single/dating
- RARP: pT2 3+4, R0 Nx
- Immediately continent/ potent

Harms of treatment

- We knew this one:
 - Adequate evidence shows that nearly 90% of men with PSAdetected prostate cancer in the United States have early treatment with surgery, radiation, or androgen deprivation therapy
- Not sure I knew/believed this one:
 - Adequate evidence shows that up to 5 in 1000 men will die within 1 month of prostate cancer surgery

- 5 in 1000
- 1 in 200—what was reported in interviews
- 0.5%

ter

- I do 200-220/year—this would be every year
 - I've had 1 in 2500—pt with known cardiac disease—infarcted stents while on asa intraop

Source Information

- Yao S-L, Lu-Yao G. Population-based study of relationships between hospital volume of prostatectomies, patient outcomes, and length of hospital stay. J Natl Cancer Inst 1999; **91:** 1950.
- Szabo L. Experts explain why PSA test is not worth risk. USA Today May 23, 2012, quoting Virginia Moyer on behalf of the U.S. Preventive Services Task Force. Available at: http://www.usatoday.com/news/health/story/2012-05-21/psatest-questions-answers/55120916/1.
- Alibhai SMH, Leach M, Tomlinson G et al. 30-day mortality and major complications after radical prostatectomy: influence of age and comorbidity. J Natl Cancer Inst 2005; 97: 1525.
- Begg CB, Riedel ER, Bach PB et al. Variations in morbidity after radical prostatectomy. N Engl J Med 2002; 346: 1138.
- Walz J, Montorsi F, Jeldres C et al. The effect of surgical volume, age, and comorbidities on 30-day mortality after radical prostatectomy: a populationbased analysis of 9208 consecutive cases. BJU Int 2008; **101**: 826.

MDAnderson Cancer Center

What do you think?

Project—Modern Numbers, Techniques

- Premier Perspective Database—large, hospital-based data collection—aims for benchmarking, resource utilization
- Billing/diagnostic codes
- Can distinguish procedures
- Co-morbidity scores, perioperative outcomes
- Limitations in 2012—no pathology, no post discharge events

RP: Cohorts

Characteristic	ORP—All 43,964	ORP—RH 30,124	RARP 27,348	LRP 733	P val
# hospitals	347	142	142	53	
#surgeons	2995	1767	744	105	
Age	63.2	63	61	59	<0.001
Op Time-Hrs	3.3	3.4	4.4	3.9	<0.001
LOS	3.5	3.4	2.2	3.6	<0.001
Complications	16.5%	15.8%	10.6%	10.2%	<0.001

RP Cohorts

2004-2010 Totals	ORP-All	ORP-RH	RARP	LRP	P val
#discharges	43,964	30,124	27,348	733	0.0008
# Mortalities	46	27	9	2	0.0066
% Mortalities	0.10	0.09	0.03	0.27	0.0218
Mortality ratio	1:956	1:1,116	1: 3039	1:367	

Critique---Post discharge events not captured

2017 Update—Now with post discharge

2008-2016	Open All	Open RH	RARP	LRP
Patients	26,253	21,110	84,186	1,002
Hosp Mortality	62 (0.234%)	46 (0.220%)	36 (0.042%)	3 (0.300%)
Post Discharge	17 (0.065%)	17 (0.081%)	27 (0.032%)	0
Overall Periop Mortality	79 (0.301%)	63 (0.300%)	63 (0.070%)	3 (0.300%)
Ratio 1 in	332	333	1428	333

Issues following prostate cancer treatment

Christopher J.D. Wallis April 13, 2017

Issues following prostate cancer treatment

aka

Oncologic and competing causes of morbidity and mortality for patients following prostate cancer treatment

Christopher J.D. Wallis

April 13, 2017

Issues following prostate cancer treatment

Or, as John Davis suggested, Clinically Significant Prostate Cancer: Biological and Epidemiological Observations to Improve Cancer-Free and Survival Metrics

Christopher J.D. Wallis

April 13, 2017

Overview

- Background
- Part 1: Identifying miRNA predictors of metastasis following RP
- Part 2: Assessing the role of ADT and primary Rx in non-PCSM
- Part 3: Quantifying the risk of secondary cancer after prostate RT
- Conclusions

Background

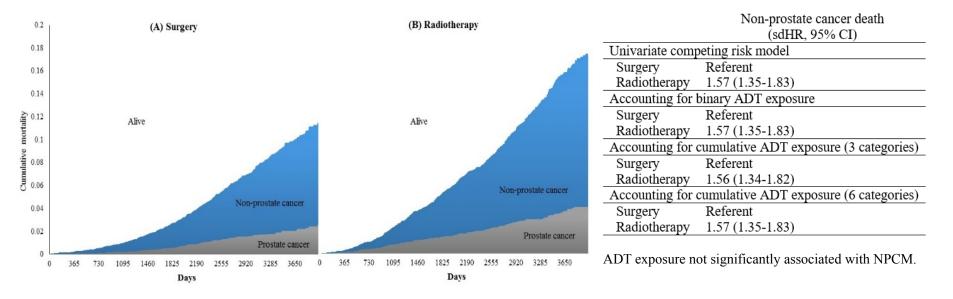
- The majority of newly diagnosed patients will receive treatment
 - Surgery, radiotherapy, or androgen deprivation therapy¹
- Prostate cancer treatment is associated with significant complications
 - Erectile dysfunction
 - Urinary incontinence²
- Recent work has demonstrated other complications occur commonly
 - Urologic procedures
 - Rectal-anal procedures
 - Major surgeries
 - Secondary malignancies³⁻⁵

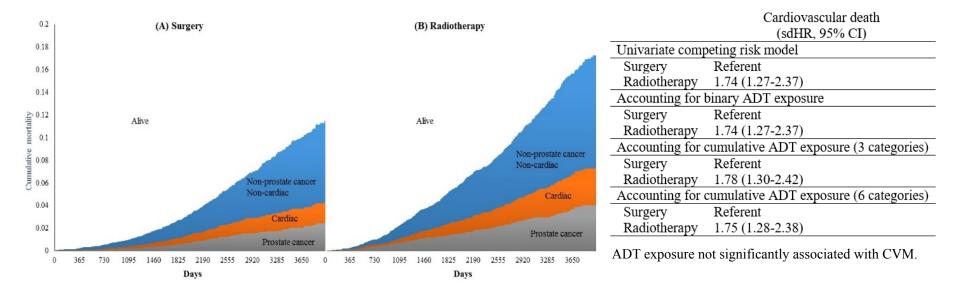
¹Cooperberg and Carrol. JAMA. 2015;314:80.
 ²Resnick et al. NEJM. 2013;368:436.
 ³Wallis et al. Brit J Cancer 2015;112(6):977
 ⁴Wallis et al. Urology 2015;85(3):621
 ⁵Nam et al. Lancet Oncol 2014;1⁵(2):223.

Part 1 Conclusions

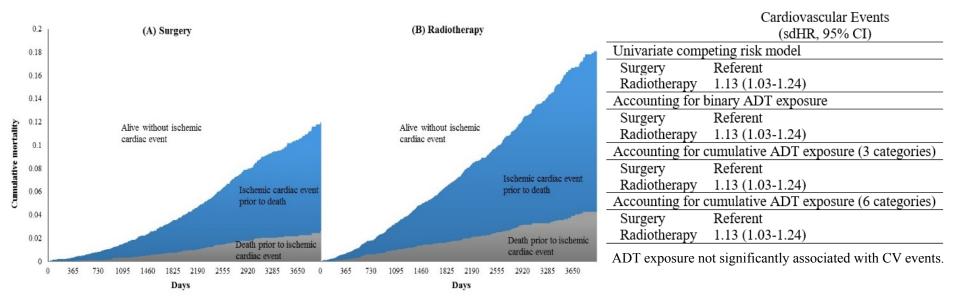
- We have identified a panel of 5 miRNA which are associated with the development of metastasis following radical prostatectomy.
- Further work is underway to validate these results among independent cohorts.

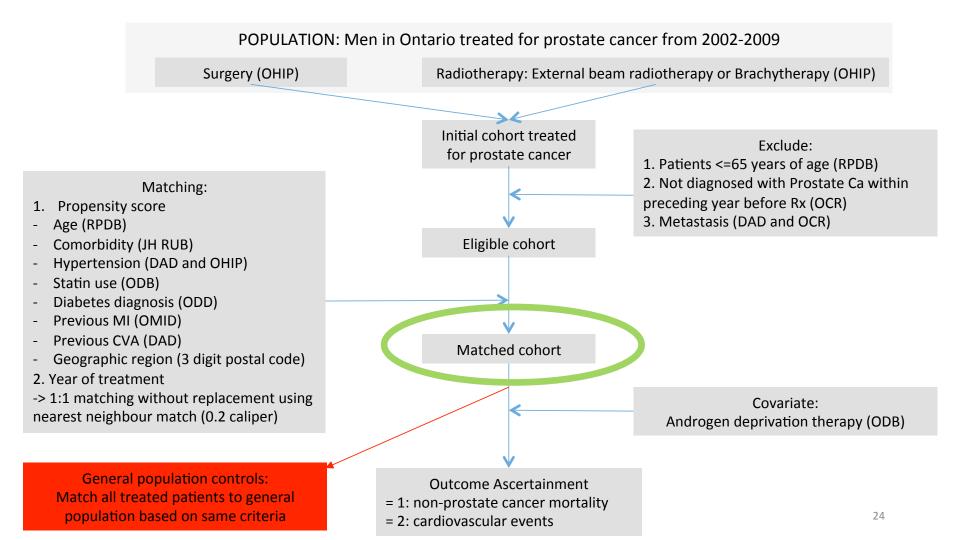
Part 2:


Long-term complications following prostate cancer treatment: The role of primary treatment modality and androgen deprivation therapy

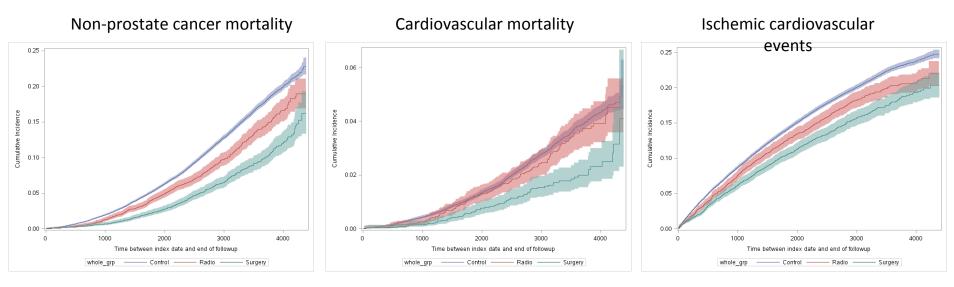

Baseline characteristics

	Before prop	ensity-score match	After propensity-score matching				
			Std			Std	
VARIABLE	Surgery	Radiotherapy	Diff	Surgery	Radiotherapy	Diff	
Sample size	N=6,851	N=13,800		N=5,393	N=5,393		
Age at diagnosis				-			
Mean ± SD	68.92 ± 2.63	72.99 ± 4.46	1.11	69.45 ± 2.68	69.46 ± 2.78	0	
Median (IQR)	68 (67-70)	73 (70-76)	1.15	69 (67-71)	69 (67-71)	0.01	
Hypertension (n,%)	5,149 (75.2%)	11,183 (81.0%)	0.14	4,166 (77.2%)	4,187 (77.6%)	0.01	
Active statin use (n,%)	654 (9.5%)	3,256 (23.6%)	0.38	622 (11.5%)	636 (11.8%)	0.01	
Diabetes (n,%)	1,176 (17.2%)	3,115 (22.6%)	0.14	1,003 (18.6%)	1,067 (19.8%)	0.03	
History of MI (n,%)	68 (1.0%)	301 (2.2%)	0.1	65 (1.2%)	76 (1.4%)	0.02	
History of stroke (n,%)	18 (0.3%)	135 (1.0%)	0.09	18 (0.3%)	15 (0.3%)	0.01	
Year of treatment (n,%)							
2002	710 (10.4%)	1,542 (11.2%)	0.03	580 (10.8%)	571 (10.6%)	0.01	
2003	717 (10.5%)	1,617 (11.7%)	0.04	587 (10.9%)	623 (11.6%)	0.02	
2004	770 (11.2%)	1,648 (11.9%)	0.02	614 (11.4%)	610 (11.3%)	0	
2005	839 (12.2%)	1,623 (11.8%)	0.01	648 (12.0%)	632 (11.7%)	0.01	
2006	936 (13.7%)	1,754 (12.7%)	0.03	732 (13.6%)	707 (13.1%)	0.01	
2007	988 (14.4%)	1,784 (12.9%)	0.04	770 (14.3%)	763 (14.1%)	0	
2008	834 (12.2%)	1,682 (12.2%)	0	636 (11.8%)	644 (11.9%)	0	
2009	795 (11.6%)	1,581 (11.5%)	0	614 (11.4%)	633 (11.7%)	0.01	
2010	262 (3.8%)	569 (4.1%)	0.02	212 (3.9%)	210 (3.9%)	0	
Comorbidity score (ADG sum)							
Mean ± SD	8.39 ± 2.98	9.12 ± 3.11	0.24	8.56 ± 3.00	8.62 ± 2.99	0.02	
Median (IQR)	8 (6-10)	9 (7-11)	0.23	8 (6-11)	8 (6-11)	0.02	

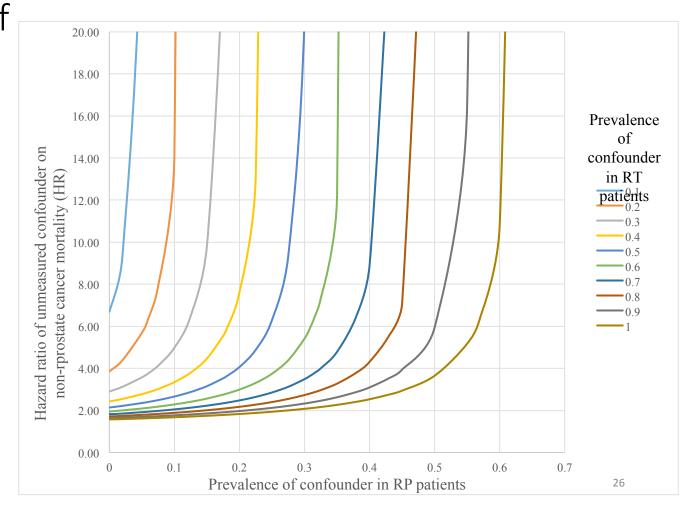

Non-prostate cancer mortality



Cardiovascular mortality



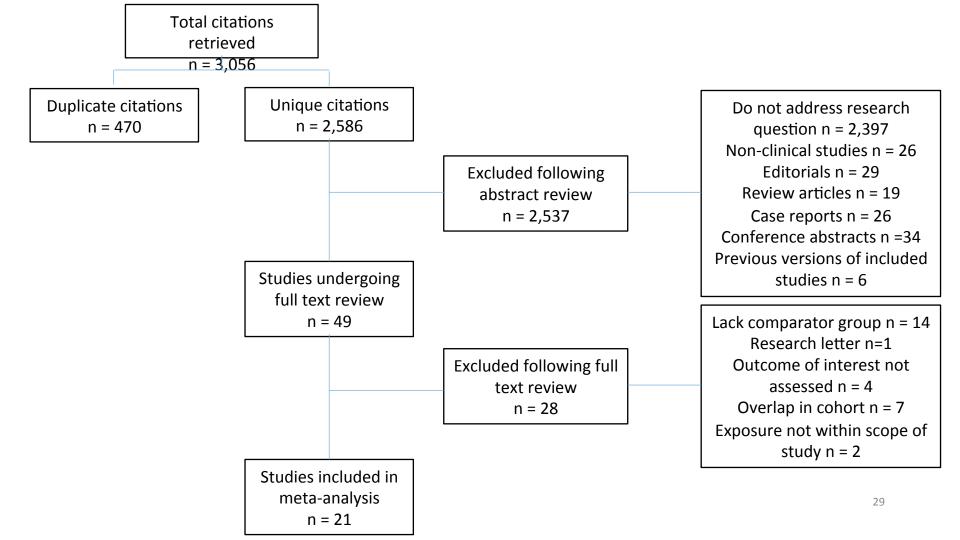
Ischemic cardiovascular events


Outcomes

Control = referent Surgery = sdHR 0.53 (0.47-0.59) Radiotherapy = sdHR 0.79 (0.72-0.86)

Control = referent Surgery = sdHR 0.55 (0.44-0.69) Radiotherapy = sdHR 0.93 (0.78-1.10) Control = referent Surgery = sdHR 0.76 (0.70-0.81) Radiotherapy = sdHR 0.88 (0.82-0.94)

Assessment of the effect of confounding



Part 2 Conclusions

- Primary treatment modality is a significant predictor of NPCM.
- Explanations?
 - Selection bias
 - Biologic effect
- Based on this analysis, likely both!

Part 3:

Secondary malignancies following radiotherapy for prostate cancer: A systematic review and meta-analysis

Bladder cancer

	NOOLEA	ents/totat			
Subgroup and study	Radiation	No radiation	Odds ratio M-H	Weight	
No restriction to lag period			random (95% CI)	(%)	random (95% CI)
Bhojani 2010	69/3008	120/5693		16	1.09 (0.81 to 1.47)
Boorjian 2007	33/2471	68/7210		13	1.42 (0.94 to 2.16)
Davis 2014	343/25 569	506/71 242		22	1.90 (1.66 to 2.18)
Hinnen 2011	17/1187	10/701		6	1.00 (0.46 to 2.21)
Nam 2014	17/16 595	12/15 870		6	1.36 (0.65 to 2.84)
Pickles 2002	62/9890	134/29 371		16	1.38 (1.02 to 1.86)
Singh 2008	8/210	7/416	++	4	2.31 (0.83 to 6.47)
Van Hemelrijck 2014	23/1577	64/5381		11	1.23 (0.76 to 1.99)
Zelefsky 2012	16/1310	16/1348		7	1.03 (0.51 to 2.07)
Total (95% CI)	588/61 817	937/137 232		100	1.39 (1.12 to 1.71)
Test for heterogeneity: $\tau^2=0.05$, χ ² =18.32, df=8, P	=0.02, l ² =56%			
Test for overall effect: z=3.04, F	P=0.002				
Restricted to studies with 5 yes	ar lag				
Bhojani 2010	69/3008	120/5693		9	1.09 (0.81 to 1.47)
Nam 2014	17/16595	12/15 870		1	1.36 (0.65 to 2.84)
Singh 2008	748/123 053	1076/233 197	/ 🚆	90	1.32 (1.20 to 1.45)
Total (95% CI)	834/142 656	1208/254 760) 🔺	100	1.30 (1.19 to 1.42)
Test for heterogeneity: $\tau^2=0.00$, χ ² =1.43, df=2, P=	0.49, l ² =0%			
Test for overall effect: z=5.77, F	P(0.001				
Restricted to studies with 10 y	earlag				
Bhojani 2010	9/630	19/1921		3	1.45 (0.65 to 3.22)
Davis 2014	343/25 569	506/71 242		97	1.90 (1.66 to 2.18)
Total (95% CI)	352/26 199	525/73 163	↓ ↓	100	1.89 (1.65 to 2.16)
Test for heterogeneity: $\tau^2=0.00$, χ²=0.43, df=1, P=	0.51, l ² =0%	0.2 0.5 1 2 5	-	
Test for overall effect: z=9.16, F	P(0.001				
			Lower risk of Higher risk o bladder cancer bladder cance		

No of events/total

Fig 2 | Risk of bladder cancer after any radiotherapy compared with no radiation in studies with no restriction to lag period, studies with five year lag period, and studies with 10 year lag period

Colorectal cancer

	no or events/totat			
Subgroup and study	Radiation	No radiation	Odds ratio M-H	Weight Odds ratio M-H
No restriction to lag period		random (95% Cl)	(%) random (95% CI)	
Bhojani 2010	33/3079	43/6037		11 1.51 (0.96 to 2.38)
Boorjian 2007	11/2471	20/7210		7 1.61 (0.77 to 3.36)
Davis 2014	310/25 569	557/71 242		17 1.56 (1.35 to 1.79)
Hinnen 2011	25/1187	16/701		8 0.92 (0.49 to 1.74)
Margel 2011	26/2163	168/26 830	│ _ ■	12 1.93 (1.27 to 2.93)
Nam 2014	45/16595	15/15 870		9 2.87 (1.60 to 5.16)
Pickles 2002	234/9890	319/29 371		17 2.21 (1.86 to 2.62)
Rapiti 2008	11/264	8/870		5 4.68 (1.86 to 11.77)
Van Hemelrijck 2014	24/1577	97/5381		11 0.84 (0.54 to 1.32)
Zelefsky 2012	13/1310	9/1348		5 1.49 (0.64 to 3.50)
Total (95% CI)	732/64 105	1252/164 86		100 1.68 (1.33 to 2.12)
Test for heterogeneity: $\tau^2=0.08$, χ^2	=31.82, df=9, P	(0.001, l ² =729	6	
Test for overall effect: z=4.34, P=0	0.001			
Restricted to studies with 5 year l	ag			
Berrington de Gonzalez 2011	1142/76 363	17 27/123 80) 📥 i	31 1.07 (1.00 to 1.16)
Bhojani 2010	33/3079	43/6037		27 1.51 (0.96 to 2.38)
Nam 2014	45/16 595	15/15 870		> 24 2.87 (1.60 to 5.16)
Rapiti 2008	11/264	8/870		18 4.68 (1.86 to 11.77)
Total (95% CI)	1231/96 301	1793/146 57		100 1.94 (1.07 to 3.50)
Test for heterogeneity: $\tau^2=0.29$, χ^2	=22.08, df=3, P	0.001, l ² =869	6	
Test for overall effect: z=2.20, P=0	.03			
Restricted to studies with 10 year	lag			
Bhojani 2010	4/660	6/2107		→ 1 2.14 (0.60 to 7.59)
Davis 2014	310/25 569	557/71 242		99 1.56 (1.35 to 1.79)
Total (95% CI)	314/26 229	563/73 349		100 1.56 (1.36 to 1.80)
Test for heterogeneity: $\tau^2=0.00$, χ^2	=0.23, df=1, P=	0.63, I ² =0%		
Test for overall effect: z=6.31, P(0.	001		0.2 0.5 1 2	5
			Lower risk of Higher colorectal cancer colorectal	
			contrector	

No of events/total

Fig 4 | Risk of colorectal cancer after any radiotherapy compared with no radiation in studies with no restriction to lag 31 period, studies with five year lag period, and studies with 10 year lag period

Rectal cancer

	no or cr	encoprocat		
Subgroup and study	Radiation	No radiation		Weight Odds ratio M-H
No restriction to lag period			random (95% CI)	(%) random (95% Cl)
Bhojani 2010	33/3079	43/6037		18 1.51 (0.96 to 2.38)
Boorjian 2007	11/2471	20/7210		9 1.61 (0.77 to 3.36)
Davis 2014	112/25 569	142/71 242	— — —	30 2.20 (1.72 to 2.82)
Hinnen 2011	17/1187	9/701		8 1.12 (0.50 to 2.52)
Margel 2011	26/2163	168/26 830		20 1.93 (1.27 to 2.93)
Rapiti 2008	2/264	4/870		 2 1.65 (0.30 to 9.07)
Van Hemelrijck 2014	7/1577	28/5381		8 0.85 (0.37 to 1.96)
Zelefsky 2012	7/1310	9/1348		6 0.80 (0.30 to 2.15)
Total (95% CI)	215/37 620	423/119619		100 1.62 (12.6 to 2.08)
Test for heterogeneity: τ^2 =0.04, χ^2	=10.38, df=7, P	=0.17, I ² =339	6	
Test for overall effect: z=3.75, P=0	0.001			
Restricted to studies with 5 year la	ag			
Berrington de Gonzalez 2011	371/76 363	495/123 800) 📲 :	50 1.22 (1.06 to 1.39)
Bhojani 2010	29/660	37/2107		39 2.57 (1.57 to 4.21)
Rapiti 2008	2/264	4/870		 11 1.65 (0.30 to 9.07)
Total (95% CI)	402/77 287	536/126 777		100 1.68 (0.90 to 3.15)
Test for heterogeneity: $\tau^2=0.20$, χ^2	=8.30, df=2, Po	0.001, l ² =76%		
Test for overall effect: z=1.63, P=0	.10			
Restricted to studies with 10 year	lag			
Bhojani 2010	4/660	6/2107		► 4 2.14 (0.60 to 7.59)
Davis 2014	112/25 569	142/71 242		96 2.20 (1.72 to 2.82)
Total (95% CI)	116/26 229	148/73 349		100 2.20 (1.72 to 2.81)
Test for heterogeneity: τ^2 =0.00, χ^2	=0.00, df=1, P=	0.96, l ² =0%		
Test for overall effect: z=6.35, P(0.001		0.2 0.5 1 2 Lowerrisk of Higherrisk	5	
		Lower risk of Higher risk rectal cancer rectal can		

No of events/total

Fig 5 | Risk of rectal cancer after any radiotherapy compared with no radiation in studies with no restriction to lag period, studies with five year lag period, and studies with 10 year lag period

Part 3 Conclusions

• Radiotherapy for prostate cancer increases the risk of secondary malignancies within the radiotherapy field but not outside the field

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History

Or...Hungry for more

FIRST OPINION

The new recommendations for prostate cancer screenings are a bad deal

By VINAY PRASAD / APRIL 11, 2017

MDAnderson Cancer Center

hat popping sound you may have heard on Tuesday was made by urologists opening the champagne bottles they had <u>chilled in</u> <u>anticipation</u> of the United States Preventive Services Task Force (USPSTF) <u>upgrading its recommendation</u> about PSA screening for prostate cancer from a D (the harms outweigh the benefits) to a C (it's an individual decision).

Much like a teacher changing a dissatisfied student's grade from a D to a C — and only after much complaining — the <u>new guidelines</u> should hardly be construed as a ringing endorsement. <u>PSA screening</u> remains a difficult decision for healthy men and their doctors.

MDAnderson Cancer Center

The data on which the USPSTF based its new recommendation for PSA screening is similar to the data it used for its <u>prior recommendation in 2012</u>. No study has shown that the test saves lives or improves the quality of life. It does not reduce mortality or extend survival in any randomized trial to date, nor when all studies are combined together. Let me say that again: There is no proof that PSA screening extends your life, improves the years you have, or reduces your risk of dying.

In my mind, the greatest misconception about the test is that we say it "saves lives" when that is uncertain. PSA testing reduces the risk of dying of prostate cancer, but there is no evidence it <u>reduces the risk of dying</u>.

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center Making Cancer History" There is a big difference between the phrase "reduces the risk of dying from prostate cancer" and the phrase "reduces the risk of dying." Men must understand the difference to make an informed choice.

Conclusions

- 30 day mortality after RP is better in the 2010's than 1990's
- Lowest 30 day mortality is RARP
- Post-discharge mortality less common but not trivial
- Radiation therapy might increase non-prostate ca mortality rates and secondary cancers
- Non PCa mortality incidence can "undo" some of the PCA mortality reductions we have proven with PSA screening and surgery

