Accurate Staging of Prostate Cancer

Phillip J. Koo, MD
Chief, Division of Nuclear Medicine and Molecular Imaging
Associate Professor of Radiology
What imaging tools are available?

When do I use them?
<table>
<thead>
<tr>
<th>Organization</th>
<th>Year</th>
<th>Patient Type</th>
<th>Imaging for Bone Mets</th>
<th>Imaging for Soft Tissue Mets</th>
<th>Imaging Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCWG2</td>
<td>2007</td>
<td>Trial eligibility for metastatic CRPC or baseline diagnosis</td>
<td>Progression = appearance of 2 or more new lesions</td>
<td>Only report changes in lymph nodes ≥2 cm in diameter at baseline</td>
<td>Every 12 wk in clinical trials</td>
</tr>
<tr>
<td>ACR</td>
<td>2010</td>
<td>Diagnosis and staging</td>
<td>PSA ≥20 ng/mL or poorly differentiated primary tumors</td>
<td>Bone scan; CT/MRI</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Back pain and partially collapsed vertebra on radiography</td>
<td>MRI; Bone scan with SPECT spine; FDG-PET</td>
<td>NA</td>
</tr>
<tr>
<td>ESMO</td>
<td>2010</td>
<td>Diagnosis and staging</td>
<td>PSA ≥15 ng/mL, Gleason ≥7, or ≥T3</td>
<td>Bone scan; pelvis CT/MRI</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MRI; Bone scan with SPECT spine; FDG-PET</td>
<td>NA</td>
</tr>
<tr>
<td>AUA</td>
<td>2007</td>
<td>Diagnosis and staging</td>
<td>PSA ≥20 ng/mL or Gleason >7</td>
<td>Bone scan; CT</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Update 2011</td>
<td>Annual meeting</td>
<td>PSA ≥20 ng/mL, T2c, or Gleason ≥8</td>
<td>Bone scan; CT</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>EAU</td>
<td>2012</td>
<td>Diagnosis and staging</td>
<td>PSA ≥20 ng/mL</td>
<td>Bone scan; PET/CT or MRI for equivocal cases</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Follow-up after treatment with curative intent</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Follow-up after hormonal treatment</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Diagnosis for PSA relapse after RP</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Initial clinical assessment and staging</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Postradical prostatectomy recurrence</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Systemic therapy for metastatic CRPC</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>NCCN</td>
<td>2013</td>
<td></td>
<td></td>
<td>Bone scan</td>
<td>NA</td>
</tr>
</tbody>
</table>

ACR, American College of Radiology; AUA, American Urological Association; CRPC, castration-resistant prostate cancer; CT, computed tomography; EAU, European Association of Urology; ESMO, European Society for Medical Oncology; FDG, fluordeoxyglucose; MRI, magnetic resonance imaging; NA, not addressed; NCCN, National Comprehensive Cancer Network; PCWG2, Prostate Cancer Clinical Trials Working Group 2; PET, positron emission tomography; PSA, prostate-specific antigen; RP, radical prostatectomy; SPECT, single photon emission computed tomography.
1st Generation

- Tc-99m diphosphonates
- Prostascint
- NaF
5/18/15
(GS 4 + 5; PSA on 4/9/15: 28.73)
7/24/15
(PSA 118.39)
NOPR Update

Decision Summary

A. The Centers for Medicare & Medicaid Services (CMS) has determined that the evidence is sufficient to determine that use of a NaF-18 positron emission tomography (PET) scan to identify bone metastasis of cancer is not reasonable and necessary to diagnose or treat an illness or injury or to improve the functioning of a malformed body member and, therefore, is not covered under § 1862(a)(1)(A) of the Social Security Act.

B. CMS shall continue the requirement for coverage with evidence development (CED) under §1862(a)(1)(E) of the Social Security Act for NaF-18 PET to identify bone metastasis of cancer contained in section 220.6.19B of the Medicare National Coverage Determinations Manual for 24 months from the final date of this decision. This extension is to allow confirmatory analyses to be performed and resulting evidence to be published to definitely answer the following question:

Does the addition of NaF-18 PET imaging lead to:

- A change in patient management to more appropriate palliative care; or
- A change in patient management to more appropriate curative care; or
- Improved quality of life; or
- Improved survival?

All other uses and clinical indications for NaF-18 PET are nationally non-covered.

CMS will reconsider the NCD at such time when the evidence has been published in a peer-reviewed journal.
2nd Generation

- C-11 Choline
- F-ACBC
- Detects disease in bone and soft tissues
FACBC vs. Choline

- Prospective study with 50 patients
- C-11 Choline and FACBC PET/CT within 1 week

TABLE 2. Patient-Based Analysis

<table>
<thead>
<tr>
<th>50 Patients</th>
<th>11C-Choline (-)</th>
<th>11C-Choline (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluciclovine (-)</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Fluciclovine (+)</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

$P < 0.000001$

TABLE 3. Lesion-Based Analysis

<table>
<thead>
<tr>
<th>17 Fluciclovine-Positive Patients</th>
<th>11C-Choline (+)</th>
<th>Fluciclovine (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

$P < 0.0001$

FIGURE 1. 18F-fluciclovine axial cut (A, fusion; B, CT; C, PET; D, MIP) showing increased uptake in 1 small positive interaortocaval lymph node (arrow). Corresponding 11C-choline axial cut (E, fusion; F, CT; G, PET; H, MIP) resulted completely negative.
FIGURE 3. 18F-fluciclovine axial cut (A, fusion; B, CT; C, PET; D, MIP) showing increased uptake in the right sacroiliac area, consistent with bone relapse (arrow). Corresponding 11C-choline axial cut (E, fusion; F, CT; G, PET; H, MIP) demonstrated a very mild uptake, still consistent with normal bone marrow uptake.
FIGURE 6. Detection rate (percent) of 18F-fluciclovine and 11C-choline in relation to different groups of PSA levels (nanogram/milliliter).
F-ACBC

- Blue Earth Diagnostics
- Manufactured and distributed in US by PETNET

FDA accepts Blue Earth's PET agent application

By AuntMinnie.com staff writers

December 2, 2015 -- Blue Earth Diagnostics announced that its new drug application (NDA) filing for the PET agent fluciclovine has been accepted by the U.S. Food and Drug Administration (FDA) for priority review.

The firm is seeking U.S. marketing approval of fluciclovine (F-18) for lesion detection and localization for prostate cancer patients experiencing biochemical recurrence. Fluciclovine is a synthetic amino acid investigational PET radiopharmaceutical being studied by Blue Earth in the imaging of various cancers, with its lead product being in prostate cancer. The NDA submission for fluciclovine is based on data from more than 700 prostate cancer patients, most with biochemical recurrence and some with high-risk primary disease, imaged in the U.S., Norway, and Italy.

If approved, Siemens Healthcare subsidiary PETNet Solutions will manufacture, distribute, and sell the radiopharmaceutical in the U.S.
3rd Generation

- **PSMA**
 - Ga-68 PSMA
 - PSA \(\geq 2 \): 97%
 - PSA <0.5: 58%
 - F-DCFBC
 - Not as sensitive compared to MRI
 - Higher specificity for high grade and larger tumors compared to MRI
 - PET/MRI

- **Theranostics**

Fig. 2 A 65-year-old man post prostatectomy presents with biochemical recurrence. PSA at the time of imaging was 1.2 ng/mL. 18F-DCFBC PET/CT demonstrates multiple positive pelvic nodes on MIP image (a). Example of a positive enlarged pelvic node is demonstrated on axial PET image (b), fused PET/CT image (c), and axial CT image (d) [4]
Figure 2: Potential Utilization Strategies for 18F-NaF PET/CT and 11C-choline PET/CT to Detect Advanced Disease in Different Patient Groups with Prostate Cancer—$dt =$ doubling time; PSA = prostate-specific antigen; $vel =$ velocity.

Thank you!
When should a M0 CRPC patient initially be imaged?

1. Never

2. Annually

3. Symptomatic

4. PSA >= 2
Which of the following is most sensitive for the detection of metastatic disease?

1. Tc-99m bone scan
2. NaF PET/CT
3. C-11 Choline PET/CT
4. F-ACBC PET/CT