## Strategies of Radiotherapy for Intermediate- to High-Risk Prostate Cancer

Daisaku Hirano, MD Department of Urology Higashi-matsuyama Municipal Hospital, Higashimatsuyama-city, Saitama-prefecture, Japan How to treat with radiotherapy for more efficacies in intermediate- to high risk prostate cancer ?

- Dose escalation
- Hypofractionation
- Prophylactic irradiation to the whole pelvis
- In combination with hormone therapy
- In combination with hormone and chemotherapy

## **NCCN Guideline 2015**

## Intermediate Risk

| Expected years to live | Treatment options                                                                                                                                                        |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Observation                                                                                                                                                              |
| <10 years              | <ul> <li>Radiation therapy         <ul> <li>EBRT ± brachytherapy ± ADT for 4–6 months, or</li> <li>LDR brachytherapy alone for low-volume disease</li> </ul> </li> </ul> |
| - 40                   | <ul> <li>Surgical treatment         <ul> <li>Radical prostatectomy, or</li> <li>Radical prostatectomy + PLND if ≥2% risk of cancer in lymph nodes</li> </ul> </li> </ul> |
| ≥10 years              | <ul> <li>Radiation therapy         <ul> <li>EBRT ± brachytherapy ± ADT for 4–6 months, or</li> <li>LDR brachytherapy alone for low-volume disease</li> </ul> </li> </ul> |

## High Risk and Very High Risk

**Treatment options** 

- Radiation therapy ± ADT
  - EBRT + ADT for 2–3 years, or
  - EBRT+ brachytherapy ± ADT for 2–3 years

## **EAU Guideline 2015**

## • RT for intermediate risk GR In intermediate- risk PCa the A total dose should be 76-78 Gy, in combination with shortterm ADT (4-6 mo).

| • | RT for high risk                  | GR |
|---|-----------------------------------|----|
|   | In patients with <b>high-risk</b> | Α  |
|   | localised PCa, the total dose     |    |
|   | is 76-78 Gy in combination        |    |
|   | with long-term ADT (2-3 yrs is    |    |
|   | recommended).                     |    |
|   | In patients with <b>locally</b>   | Α  |
|   | advanced cNO PCa, radio-          |    |
|   | therapy must be given in com-     |    |
|   | bination with long-term ADT       |    |
|   | (2-3 yrs is recommended).         |    |

## Randomised Trials on Dose Escalation in Localized Prostate Cancer

| Trial                                                                         | n   | PCa condition                                           | Radiotherapy<br>Dose                                                   | Follow-up                            | Outcome                                                                   | Results                                                                                                                                            |
|-------------------------------------------------------------------------------|-----|---------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| MD Anderson<br>study 2011<br>[391]<br>Int J Radiat<br>Oncol Biol<br>Phys 2011 | 301 | T1-T3, N0, M0,<br>PSA 10 ng/mL<br>vs.<br>PSA > 10 ng/mL | 70 vs.78 Gy                                                            | Median 9<br>years                    | Disease<br>specific<br>mortality<br>(DSM) vs.<br>other cause of<br>death  | High risk / PSA >10<br>16% DSM @ 70 Gy<br>4% DSM @ 78 Gy<br>(p = 0.05)<br>Higher risk<br>15% DSM @ 70 Gy<br>2% DSM @ 78 Gy<br>(p = 0.03)           |
| PROG 95-09<br>study [392]<br>J Clin<br>Oncol<br>2010                          | 393 | T1b-T2b<br>PSA 15 ng/mL<br>75% GLS < 6                  | 70.2 vs.79.2<br>Gy<br>including<br>proton boost<br>19.8 vs. 28.8<br>Gy | Median 8.9<br>years for<br>survivors | 10-year<br>ASTRO<br>Biochemical<br>failure (BF)                           | All patients:<br>32% BF @ 70.2 Gy<br>17% BF @ 79.2 Gy<br>(p < 0.0001)<br>Low-risk patients:<br>28% BF @ 70.2 Gy<br>7% BF @ 79.2 Gy<br>(p < 0.0001) |
| MRC RT01<br>study [388]<br>Lancet Oncol<br>2014                               | 843 | T1b-T3a, N0,<br>M0<br>PSA < 50 ng/mL<br>neoadjuvant HT  | 64 vs. 74 Gy                                                           | Median 10<br>years                   | Biochemical<br>progression<br>free survival<br>(BFS); OS                  | 43% BFS @ 64 Gy<br>55% BFS @ 74 Gy<br>(p = 0.0003)<br>71% OS both groups<br>(p = 0.96)                                                             |
| Dutch<br>randomised<br>phase III trial<br>[394]                               | 664 | T1b-T4<br>143 pts. with<br>(neo)adjuvant HT             | 68 vs. 78 Gy                                                           | Median 51<br>mo                      | Freedom from<br>biochemical-<br>or clinical<br>failure (FFF @<br>5 years) | 54% FFF @ 68 Gy<br>64% FFF @ 78 Gy<br>(p = 0.02)                                                                                                   |

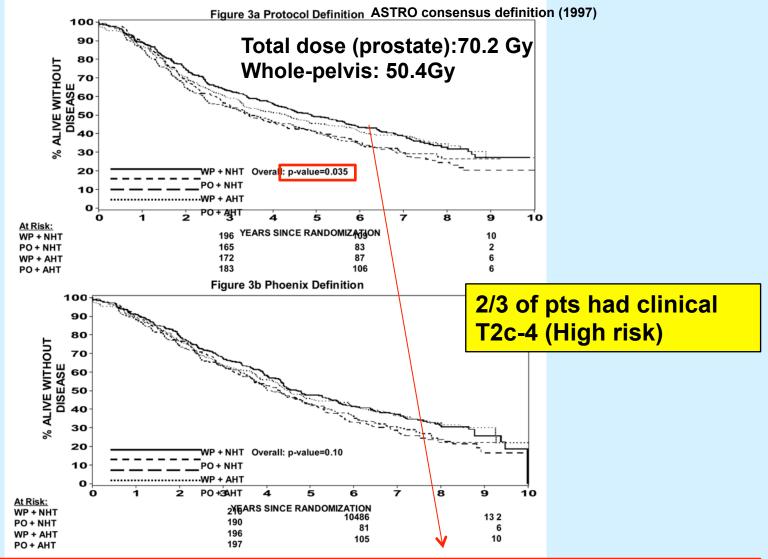
To date, no trials have shown that dose escalation results in an OS benefit.

Moderate hypofractionation (2.5 - 4 Gy per fractions)

| Table 1 – Phase 3                            | Table 1 – Phase 3 randomized trials of moderate hypofractionation for intact prostate cancer |                                        |                                      |               |            |     |                                                      |                                                                           |
|----------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|---------------|------------|-----|------------------------------------------------------|---------------------------------------------------------------------------|
| Study                                        | Median<br>FU, mo                                                                             | Risk, GS,<br>or NCCN                   | Technique                            | Regimen       | BED,<br>Gy | n   | Outcome                                              | Toxicity                                                                  |
| Lukka et al. [15]                            | 68                                                                                           | 60% GS ≤6<br>31% GS 7<br>9% GS 8–10    | 3DCRT<br>No IGRT                     | 52.5 Gy/20 fx | 62         | 466 | 5 yr FFBF 40%<br>(NS)                                | $Gr \ge 3.2\%$ (NS)                                                       |
|                                              |                                                                                              |                                        |                                      | 66 Gy/33 fx   | 66         | 470 | 5 yr FFBF 43%                                        | Gr ≥3 1%                                                                  |
| Yeoh et al. [17]                             | 90                                                                                           | n.s.                                   | 2D/3DCRT<br>No IGRT                  | 55 Gy/20 fx   | 66,8       | 108 | 7.5 yr FFBF 53%<br>( p < 0.05)                       | Late GU; HR: 1.58<br>(95% CI, 1.01–2.47)<br>favoring<br>hypofractionation |
|                                              |                                                                                              |                                        |                                      | 64 Gy/32 fx   | 64         | 109 | 7.5 yr FFBF 34%                                      |                                                                           |
| Dearnaley<br>et al. [18]                     | 51                                                                                           | n.s.                                   | 3D/IMRT<br>No IGRT<br>3-6 mo ADT     | 57 Gy/19 fx   | 73,4       | 151 | n.s.                                                 | Gr ≥2 GU 0% (NS)<br>Gr ≥2 GI 1% (NS)                                      |
|                                              |                                                                                              |                                        |                                      | 60 Gy/20 fx   | 77         | 153 |                                                      | Gr≥2 GU 2%<br>Gr≥2 GI 4%                                                  |
|                                              |                                                                                              |                                        |                                      | 74 Gy/37 fx   | 74         | 153 |                                                      | Gr ≥2 GU 2%<br>Gr ≥2 GI 4%                                                |
| Kuban et al. [14];<br>Hoffman<br>et al. [19] | 60                                                                                           | 28% low<br>71% intermediate<br>1% high | IMRT<br>IGRT<br>21% ADT              | 72 Gy/30 fx   | 80,2       | 102 | 5 yr FFBF 96%<br>(NS)                                | 5 yr Gr $\geq$ 2 GU 16% (NS)<br>5 yr Gr $\geq$ 2 GI 10% (NS)              |
|                                              |                                                                                              |                                        |                                      | 75.6 Gy/42 fx | 71.4       | 101 | 5 yr FFBF 92%                                        | 5 yr Gr ≥2 GU 17%<br>5 yr Gr ≥2 GI 5%                                     |
| Arcangeli et al.<br>[12,13]                  | 70                                                                                           | 26% GS ≤7<br>74% GS >7                 | 3DCRT<br>No IGRT<br>100% 9<br>mo ADT | 62 Gy/20 fx   | 81.4       | 83  | 5 yr FFBF 85%<br>( p = 0.065)<br>*p ss for GS ≥4 + 3 | 3 yr Gr ≥2 GU 16% (NS)<br>3 yr Gr ≥2 GI 17% (NS)                          |
|                                              |                                                                                              |                                        |                                      | 80 Gy/40 fx   | 80         | 85  | 5 yr FFBF 79%                                        | 3 yr Gr ≥2 GU 11%<br>3 yr Gr ≥2GI 14%                                     |
| Pollack et al.<br>[16]                       | 68                                                                                           | 34% GS ≤6<br>47% GS 7<br>19% GS 8–10   | IMRT<br>IGRT                         | 70.2 Gy/26 fx | 84         | 151 | 5 yr BCDF 23%<br>(NS)                                | 5 yr Gr ≥2 GU 13%<br>(p=0.16)<br>5 yr Gr ≥2 GI 9% (NS)                    |
|                                              |                                                                                              |                                        |                                      | 78 Gy/36 fx   | 78         | 152 | 5 yr BCDF 21%                                        | 5 yr Gr ≥2 GU 13%<br>5 yr Gr ≥2 GI 9%                                     |

In low-and intermediate-risk it is still unclear whether moderate hypofractionation will ultimately prove to provide similar biochemical control, distant disease survival and cancer-specific survival as standard fractionation.

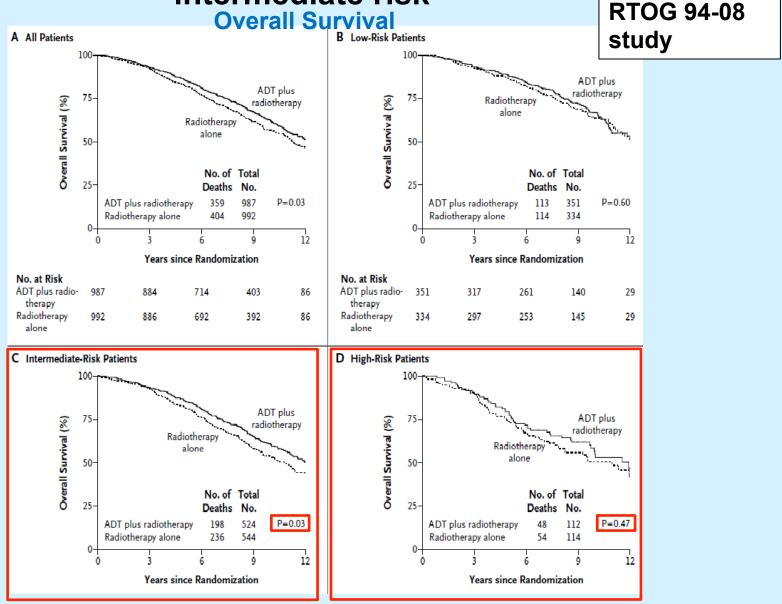
## Extreme hypofractionation (5-10 Gy in 4-7 fractions)


Table 2 - Prospective studies of extreme hypofractionation for intact prostate with at least 50 participants

|                           | n   | Median<br>FU, mo | Risk, NCCN                              | Technique    | Regimen                        | BED, Gy | Outcome                     | Toxicity                                                                        |
|---------------------------|-----|------------------|-----------------------------------------|--------------|--------------------------------|---------|-----------------------------|---------------------------------------------------------------------------------|
| Aluwini et al. [46]       | 162 | 28               | Low/intermediate                        | n.s.         | 38 Gy/4 fx                     | 119,6   | 3 yr BC 98%                 | Gr 2 GU 15%<br>Gr 2 GI 3%                                                       |
| Bolzicco et al. [27]      | 100 | 36               | 41% low<br>42% intermediate<br>17% high | Robotic IGRT | 35 Gy/5 fx<br>29% ADT          | 85      | BC 96%                      | Gr 1/2/3 GU 4%/3%/1%<br>Gr 1/2/3 GI 2%/1%                                       |
| Chen et al. [47]          | 100 | 28               | 37% low<br>55% intermediate<br>8% high  | Robotic IGRT | 35–36.25<br>Gy/5 fx<br>11% ADT | 85-90,6 | 2 yr BRFS 99%               | 2 yr Gr ≥2 GU 31%<br>2 yr Gr ≥2 GI 1%                                           |
| D'Alimonte<br>et al. [48] | 84  | 50               | 100% low                                | IMRT/IGRT    | 35 Gy/5 fx                     | 85      | BC 98%                      | Gr 2/≥3 GU 5/1%<br>Gr 2/≥3 GI 5/1%                                              |
| Fuller et al. [39]        | 260 | 20               | 45% low<br>55% intermediate             | n.s.         | 38 Gy/4 fx                     | 119.6   | 3 yr BRFS 98%               | Gr 3 GU 2%<br>(any Gr 44%)<br>Gr 3 GI 0%<br>(any Gr 11%)                        |
| Katz and Kang [24]        | 515 | 54               | 67% low<br>26% intermediate<br>7% high  | Robotic IGRT | 35–36.25<br>Gy/5 fx            | 85-90,6 | 6 yr FFBF 97%<br>92%<br>70% | $\begin{array}{l} Gr \geq 2 \; GU \; 9\% \\ Gr \geq 2 \; GI \; 4\% \end{array}$ |
| King et al. [34]          | 67  | 32               | 100% low                                | Robotic IGRT | 36.25 Gy/5 fx                  | 90,6    | 4 yr BRFS 94%               | Gr ≥2 GU 7%<br>Gr ≥2 GI 12%                                                     |
| Loblaw et al. [25]        | 84  | 55               | 100% low                                | IMRT/IGRT    | 35 Gy/5 fx                     | 85      | 5 yr BC 98%                 | 5 yr Gr ≥2 GU 5%<br>5 yr Gr ≥2 GI 7%                                            |
| Meier et al. [38,49]      | 129 | 30               | 100% intermediate                       | Robotic IGRT | 40 Gy/5 fx<br>No ADT           | 108,8   | 3 yr BRFS 99%               | Gr 2 GU 10%<br>Gr 2 GI 2%                                                       |
| Menkarios<br>et al. [29]  | 80  | 33               | 100% low                                | IMRT/IGRT    | 45 Gy/5 fx                     | 135     | 3 yr BC 97%                 | Gr ≥2 GU 14%<br>Gr ≥2 GI 16%                                                    |
| Ouon et al. [50]          | 84  | 18               | 100% low                                | IMRT/IGRT    | 35 Gy/5 fx                     | 85      | n,s,                        | Gr 2 GU 2%<br>Gr 2 GI 5%                                                        |

Only low risk and selected intermediate-risk patients have been studied.

- Biochemical control at 5ys in the low-risk are similar to a high dose IMRT series.
- However, moderate- to high-grade acute toxicities tranges r10-208/68high, 2015


An Update of the Phase trial comparing whole-pelvis (WP) to prostate only (PO) radiotherapy and neoadjuvant to adjuvant total androgen suppression (TAS): Updated analysis of RTOG 94-13



Significant difference in PFS in favor of the WP+NHT arm over PO+NHT and WP + AHT

Lawton et al. Int J Radiat Oncol Biol Phys 69: 646-55, 2007

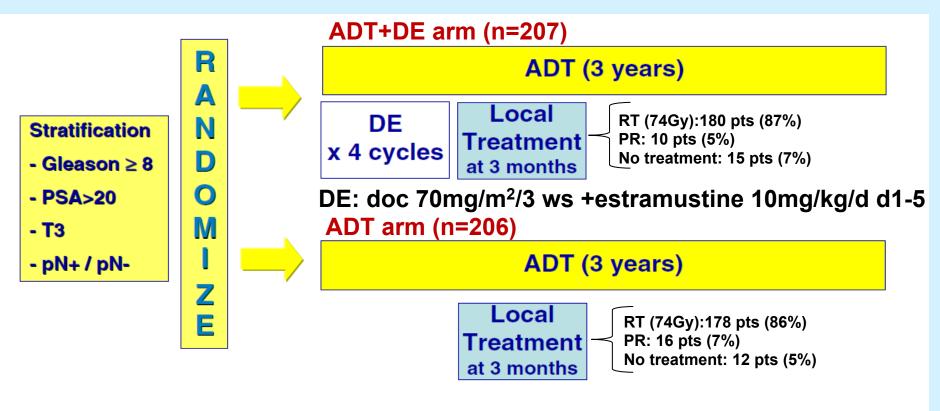
# EBRT and short-term androgen deprivation (4 months of total androgen suppression) is favorable OS for intermediate risk



Jones et al. N Engl J Med 365; 107-18, 2011

## Overall and cancer-specific mortality in duration of ADT

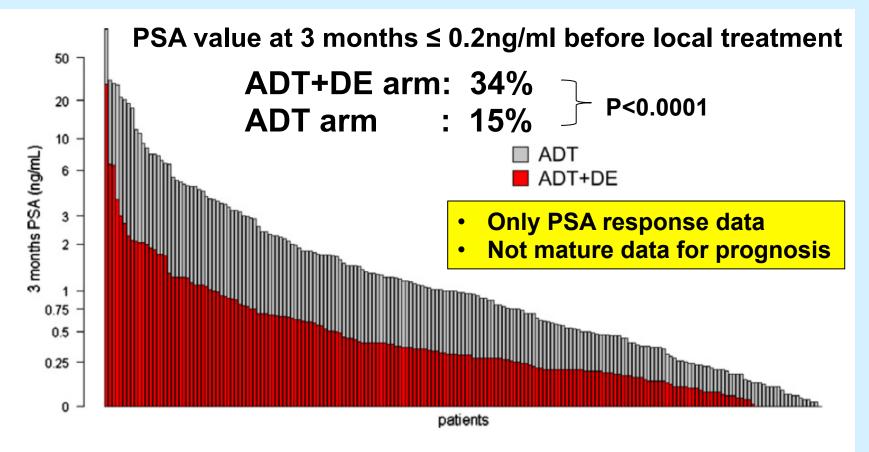
## EORTC 22961 trial




 The combination of RT plus LTAS provides superior survival as compared with RT plus STAS in the treatment of locally advanced prostate cancer.

Balla et al. N Engl J Med 360; 2516-27, 2009

# A phase III trial of docetaxel–estramustine in high-risk localised prostate cancer: GETUG 12 trial


French Group d'Etude des Tumeurs Uro-Genitales



### Trial design.

Fizazi et al. Eur J Cancer 48; 209-217, 2012

# A phase III trial of docetaxel–estramustine in high-risk localised prostate cancer: GETUG 12 trial



PSA response assessed at 3 months.

Fizazi et al. Eur J Cancer 48; 209-217, 2012

### A phase III trial of docetaxel–estramustine in high-risk localised prostate cancer: GETUG 12 trial

| Table 4 – Grade 3–4 toxicity in the chemotherapy arm. |          |                      |  |  |
|-------------------------------------------------------|----------|----------------------|--|--|
|                                                       | ADT + DE | arm (n = 205)        |  |  |
| Neutropenia                                           |          |                      |  |  |
| Grade 3                                               | 29 (14%) |                      |  |  |
| Grade 4                                               | 27 (13%) | Severe hematological |  |  |
| Febrile neutropenia                                   | 5 (2%)   | toxicities often     |  |  |
| Grade 3–4 infection                                   | 4 (2%)   | occurred.            |  |  |
| Grade 3–4 Thrombosis                                  | 5 (2%)   |                      |  |  |
| Grade 3 Diarrhoea                                     | 10 (5%)  |                      |  |  |
| Grade 3 Nausea                                        | 5 (2%)   |                      |  |  |
| Grade 3 Fatigue                                       | 5 (2%)   |                      |  |  |
| Grade 3 Alopecia                                      | 4 (2%)   |                      |  |  |
| Grade 3 Cardiac                                       | 2 (1%)   |                      |  |  |
| Grade 3 Skin                                          | 2 (1%)   |                      |  |  |

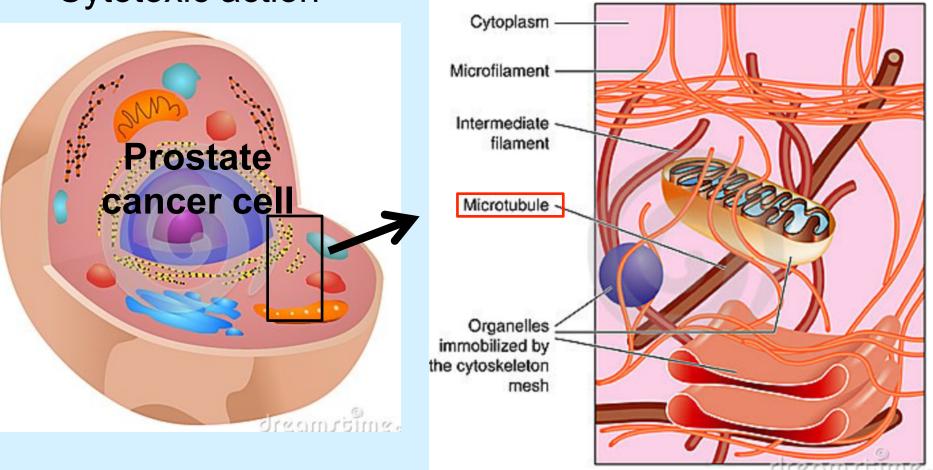
#### Fizazi et al. Eur J Cancer 48; 209-217, 2012

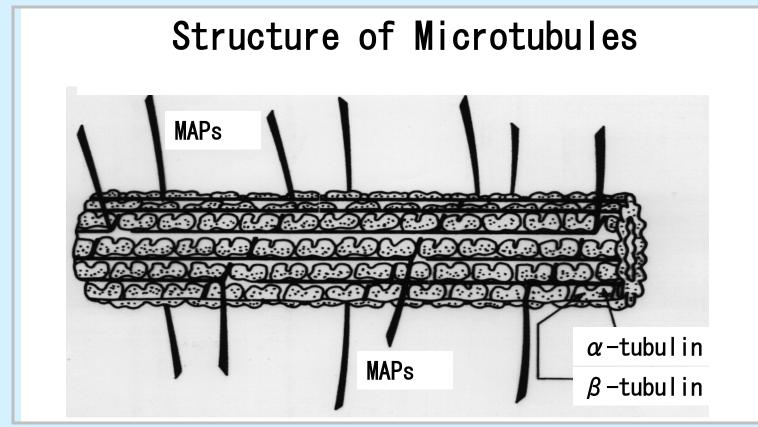
UROLOGY - ORIGINAL PAPER

### Neoadjuvant LHRH analog plus estramustine phosphate combined with three-dimensional conformal radiotherapy for intermediate- to high-risk prostate cancer: a randomized study

Daisaku Hirano · Yusuke Nagane · Katsuhiko Satoh · Junichi Mochida · Shuji Sugimoto · Taketo Ichinose · Satoru Takahashi · Toshiya Maebayashi · Tsutomu Saitoh

Received: 25 February 2009/Accepted: 24 April 2009/Published online: 16 May 2009 © Springer Science+Business Media, B.V. 2009


#### Abstract


*Objective* The objective of this study is to assess the safety and efficacy of a treatment regimen comprising neoadjuvant conventional androgen deprivation therapy (ADT) plus estramustine phosphate (EMP) combined with three-dimensional conformal radio-therapy (3D-CRT) for patients with intermediate- to high-risk prostate cancer.

*Results* The median duration of follow-up was 27.1 months. None of the patients died during the follow-up period, but three patients in the LHRH group developed distant metastasis. The 4-year PSA relapse-free survival outcomes for the EMP group and LHRH group were 61.2 and 49.4%, respectively (P = 0.04). Multivariate Cox regression model analyses of the pretreatment PSA level (>20 ng/ml

# Mechanisms of action in estramustine phosphate (EMP)

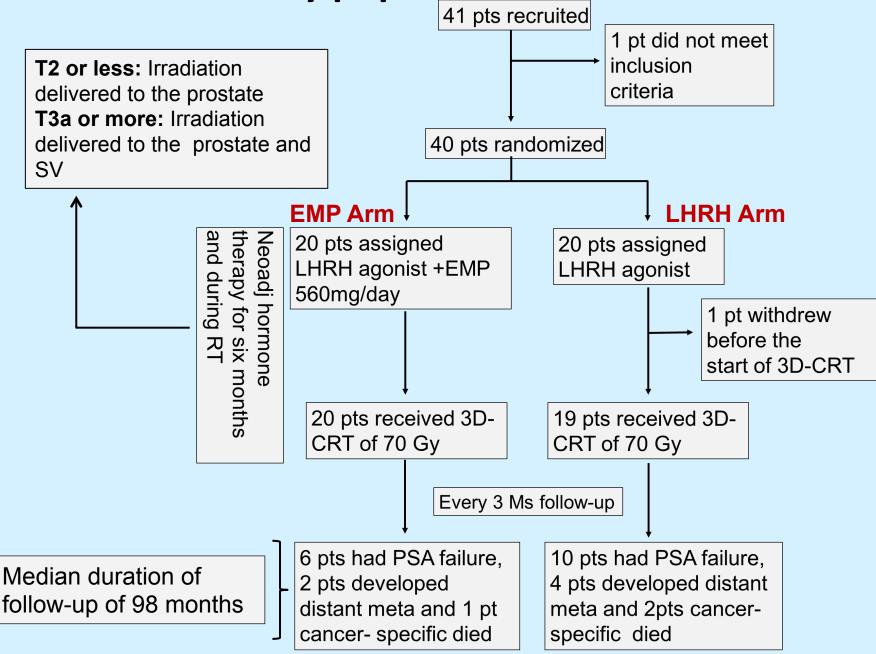
- Hormonal action
- Cytotoxic action





#### EMP binds:

- -Microtubule associated proteins (MAPs)
- 🕅 tubulin
- It tubulin at a site near, but not overlapping the taxane site


Taxanes bind: X tubulin at sites distinct from estramustine binding

# Why is EMP in combination with RT benefit for the treatment of prostate cancer?

- Cell kinetic studies have shown that EMP causes G2phase arrest. (Hartley-Asp B et al. Prostate 5; 93-100, 1984)
- Cells are most radiosensitive in the G2/M phase. (Kim et al. Int J Radiat Oncol Biol Phys 29: 555-557 1994)
- EMP enhances radiation-induced cytotoxicity in DU-145 cells in culture and in transplanted into nude mice (Eklov et al. Prostate 29; 39-45, 1994)

EMP is considered to have radiosensitizing properties

## **Study population flowchart**



### **Patient characteristics**

|                                                               | EMP G $(n = 20)$ | LHRH G $(n = 19)$ | P-value |
|---------------------------------------------------------------|------------------|-------------------|---------|
| Median age, years (range)                                     | 72 (61–86)       | 72 (63–79)        | 0.627   |
| PSA, ng/ml (%)                                                |                  |                   |         |
| <10                                                           | 7 (35)           | 5 (26)            | 0.8186  |
| 10-20                                                         | 5 (25)           | 6 (32)            |         |
| >20                                                           | 8 (40)           | 8 (42)            |         |
| Clinical stage (%)                                            |                  |                   |         |
| T2 or less                                                    | 9 (45)           | 12 (63)           | 0.5188  |
| T3a                                                           | 5 (25)           | 3 (16)            |         |
| T3b                                                           | 6 (30)           | 4 (21)            |         |
| Gleason score (%)                                             |                  |                   |         |
| 6 or less                                                     | 2 (10)           | 7 (37)            | 0.1248  |
| 7                                                             | 12 (60)          | 7 (37)            |         |
| 8–10                                                          | 6 (30)           | 5 (26)            |         |
| NCCN (%)                                                      |                  |                   |         |
| Intermediate                                                  | 8 (40)           | 9 (47)            | 0.7512  |
| High                                                          | 12 (60)          | 10 (53)           |         |
| Median PSA nadir after treatment,<br>ng/ml (range)            | 0.04 (0.04-0.47) | 0.12 (0.04–13.17) | 0.0058  |
| Median time from initial treatment<br>to PSA nadir, m (range) | 6.0 (4.4–14.2)   | 9.4 (2.8–36.1)    | 0.0460  |

Median duration of follow-up: 27.1 months (range: 5.8-.48.3 Months) Hirano et al. Int Urol Nephrol 42; 81-88, 2010

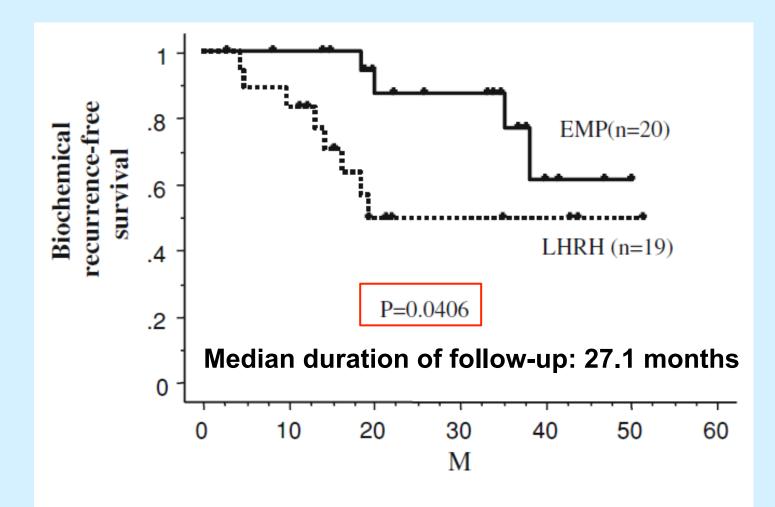
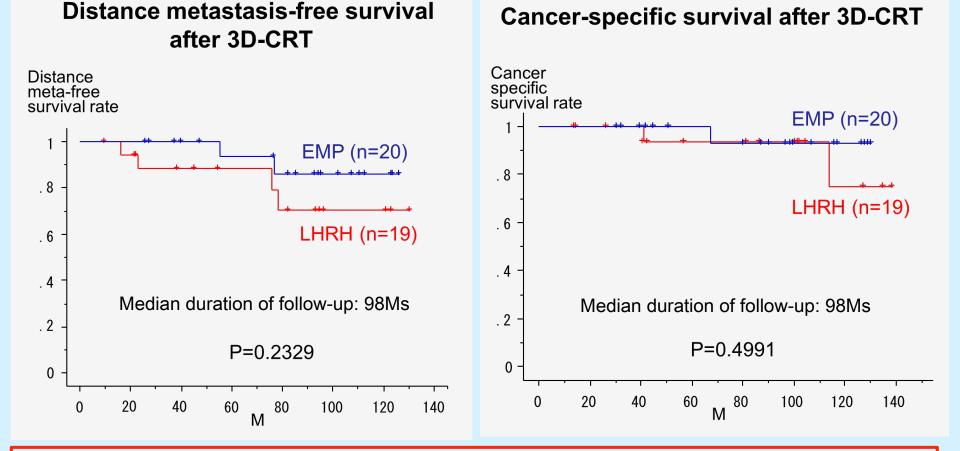



Fig. 1 Biochemical recurrence-free survival after 3D-CRT

Hirano et al. Int Urol Nephrol 42; 81-88, 2010

# Correlation between PSA relapse and variables by Cox proportional hazards regression analysis


 Table 2
 Univariate and multivariate Cox proportional hazards regression analysis of variables in relation to the risk of PSA relapse as an indicator of prostate cancer progression

| Variables                                                        | Relative risk (95%CI) | <i>P</i> -value |
|------------------------------------------------------------------|-----------------------|-----------------|
| Univariate analysis                                              |                       |                 |
| Pretreatment PSA (>20, $n = 16$ vs. 20 or less, $n = 23$ )       | 3.660 (1.099-12.185)  | 0.0345          |
| Tumor stage (T3, T4, $n = 18$ vs. T2 or less, $n = 21$ )         | 2.545 (0.764-8.475)   | 0.1279          |
| Tumor grade (G 8–10, $n = 11$ vs. G7 or less, $n = 28$ )         | 3.620 (1.153-11.368)  | 0.0275          |
| NCCN classification (high, $n = 19$ vs. intermediate, $n = 17$ ) | 4.265 (0.933-19.499)  | 0.0614          |
| Modality (LHRH, $n = 19$ vs. EMP + LHRH, $n = 20$ )              | 3.409 (1.017–11.419)  | 0.0468          |
| Multivariate analysis                                            |                       |                 |
| Pretreatment PSA (>20, $n = 16$ vs. 20 or less, $n = 23$ )       | 3.843 (1.003-14.722)  | 0.0495          |
| Tumor grade (G 8–10, $n = 11$ vs. G7 or less, $n = 28$ )         | 4.289 (1.093–16.824)  | 0.0368          |
| Modality (LHRH, $n = 19$ vs. EMP + LHRH, $n = 20$ )              | 8.009 (1.867-34.361)  | 0.0051          |

#### Median duration of follow-up: 27.1 months

Hirano et al. Int Urol Nephrol 42; 81-88, 2010

# Distant metastasis-free and cancer-specific survival at a median duration of follow-up of 98 months (long follow-up duration)



The combination of neoadjuvant ADT + EMP combined with RT did not contribute to distance metastasis-free and cancer-specific survival benefits in the long follow-up period.

| Table 3 Adverse events (%) |                  |                     |     |  |  |
|----------------------------|------------------|---------------------|-----|--|--|
| Events                     | EMP G $(n = 20)$ | LHRH G $(n = 19)$   |     |  |  |
| Gynecomastia               |                  | _                   |     |  |  |
| Grade 1                    | 9 (45)           | <b>No severe AE</b> |     |  |  |
| Gastrointestinal           |                  | No cardiac ev       | ent |  |  |
| Anorexia                   |                  |                     |     |  |  |
| Grade 1                    | 5 (25)           | 2 (11)              |     |  |  |
| Grade 2                    | 1 (5)            |                     |     |  |  |
| Nausea                     |                  |                     |     |  |  |
| Grade 1                    | 3 (15)           |                     |     |  |  |
| Grade 2                    | 1 (5)            |                     |     |  |  |
| Hematology                 |                  |                     |     |  |  |
| Anemia                     |                  |                     |     |  |  |
| Grade 1                    | 13 (65)          | 14 (74)             |     |  |  |
| Grade 2                    | 2 (10)           | 5 (26)              |     |  |  |
| Rectal toxicity            |                  |                     |     |  |  |
| Grade 1                    | 11 (55)          | 11 (58)             |     |  |  |
| Urinary toxicity           |                  |                     |     |  |  |
| Grade 2                    | 18 (90)          | 14 (74)             |     |  |  |
| Grade 3                    | 2 (10)           | 5 (26)              |     |  |  |

- Combination therapy of neoadjuvant ADT + EMP and concomitant with RT (70Gy) sustains freedom from PSA relapse in intermediate- to high-risk prostate cancer in the interim period.
- However, it is insufficient in preventing distant metastasis and cancer-specific mortality at the long follow-up duration.

- Additional interventions
  - Dose escalation (current standard dose of 76-78 Gy)
  - Adjuvant ADT
    - -Short duration (4-6 ms) for intermediate risk
    - -Long duration (2-3 ys) for high risk
- Need a study involving a large volume of patients

## Summary

## Intermediate-risk

- EBRT (IMRT) with short-term ADT is a standard radiotherapy.
- radiotherapy. • **High-risk** 
  - EBRT (IMRT) with long-term ADT is a standard radiotherapy.
  - The use of a combined modality approach, consisting of dose-escalation, irradiation to the pelvic lymph nodes in especially locally advanced cases may be efficient.
  - Studies on combined with chemotherapy using docetaxel plus EMP and ADT are under way.
  - Neoadjuvant with EMP plus ADT and concurrent with current standard dose EBRT plus adjuvant long-term ADT may be more efficient for preventing cancer relapse.

# Thank you very much