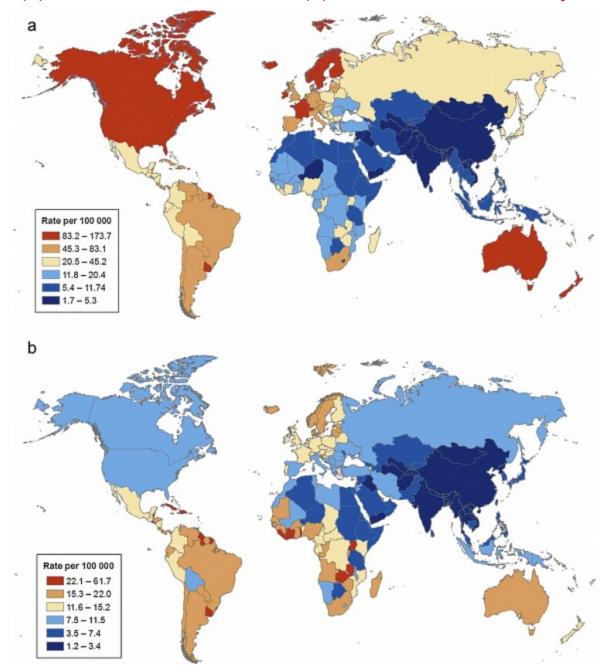
SOY ISOFLAVONES IN PROSTATE CANCER PREVENTION, TREATMENT AND SURVIVORSHIP RESEARCH

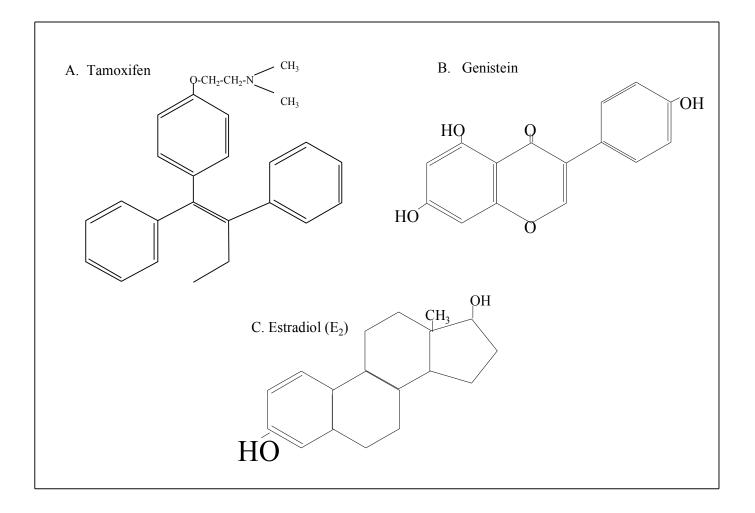
Ömer Küçük, MD


Professor of Hematology, Medical Oncology and Urology Winship Cancer Institute of Emory University Atlanta, Georgia, USA <u>okucuk@emory.edu</u>

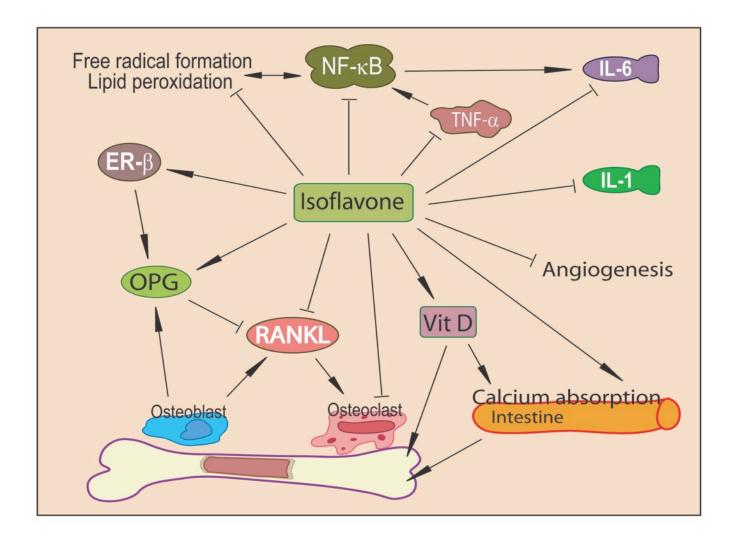
26th International Prostate Cancer Update Vail, Colorado, USA January 20-23, 2016

(a) Prostate cancer incidence (b) Prostate cancer mortality

Prostate cancer incidence and mortality worldwide


Prostate Cancer Incidence and Mortality Worldwide in 2008 – Summary

Estimated numbers (thousands)	Cases	Deaths	
World	899	258	
More developed regions	644	136	
Less developed regions	255	121	(-
WHO Africa region (AFRO)	34	24	
WHO Americas region (PAHO)	334	76	
WHO East Mediterranean region (EMRO)	12	9 <	- 10 M
WHO Europe region (EURO)	379	94	
WHO South-East Asia region (SEARO)	28	19 <	
WHO Western Pacific region (WPRO)	109	33	A CU
IARC membership (22 countries)	611	128	
United States of America	186	28	
China	33	14	
India	14	10 <	
European Union (EU-27)	323	71	

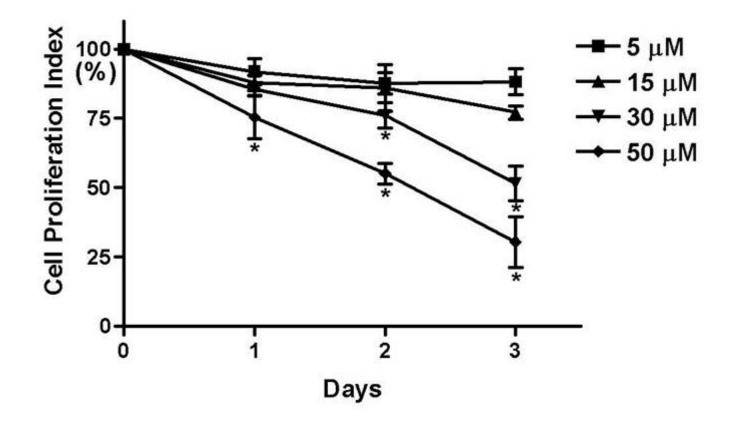

Soy isoflavones and cancer

- Epidemiologic studies show an inverse association between dietary soy intake and cancer risk (breast, prostate, lung, and others)
- Genistein and daidzein are the most abundant isoflavones in soy
- Genistein has activity against a variety of cancer cells in culture, animal model and clinical studies

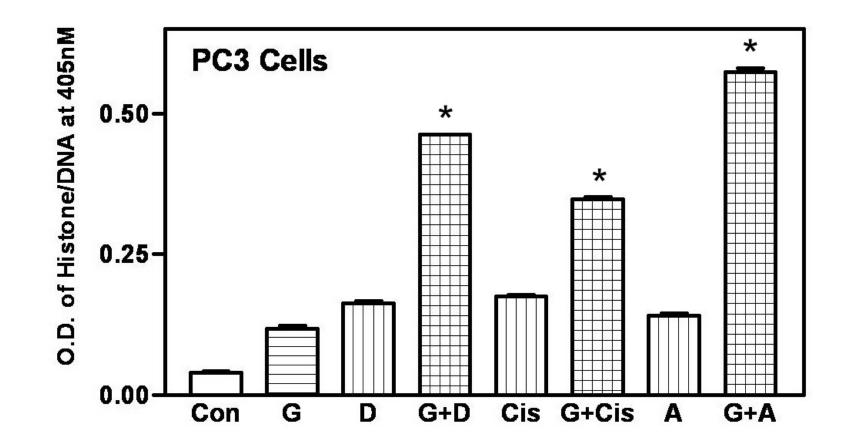
Soy Isoflavones

Genistein Has Pleiotropic Effects

Atmaca A, Kleerekoper M, Bayraktar M, Kucuk O. Menopause 15:748-57, 2008

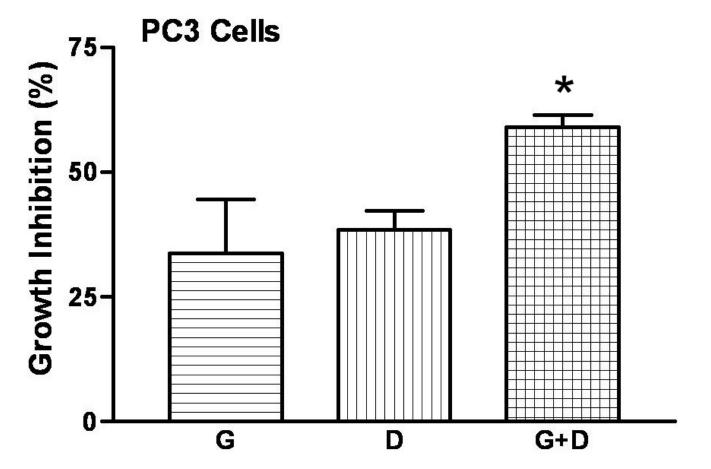

Genistein and Cancer

- Inhibits growth and induces apoptosis in Ca cells
- Growth inhibition mediated by G2/M cell cycle arrest and up-regulation of p21WAF1
- Down-regulates cyclin B1, CDKs, Bcl-2/Bcl-xL
- Up-regulates Bax expression and induces translocation of Bax to Mitochondria

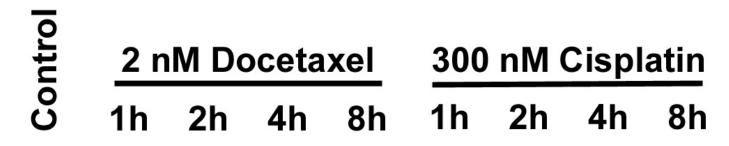

Genistein

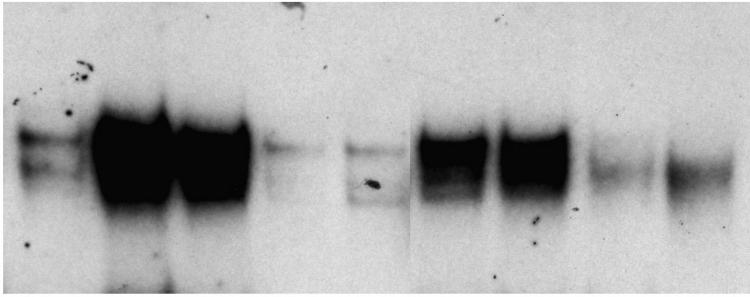
- Down-regulates MMP-2, MMP-9, uPA, c-IAP and VEGF
- Inactivates Akt and NF-kB (by inhibiting IKK)
 - blocks nuclear translocation of p50 and p65
 - inhibits phosphorylation of lkBa
 - decreases MEKK1 kinase activity

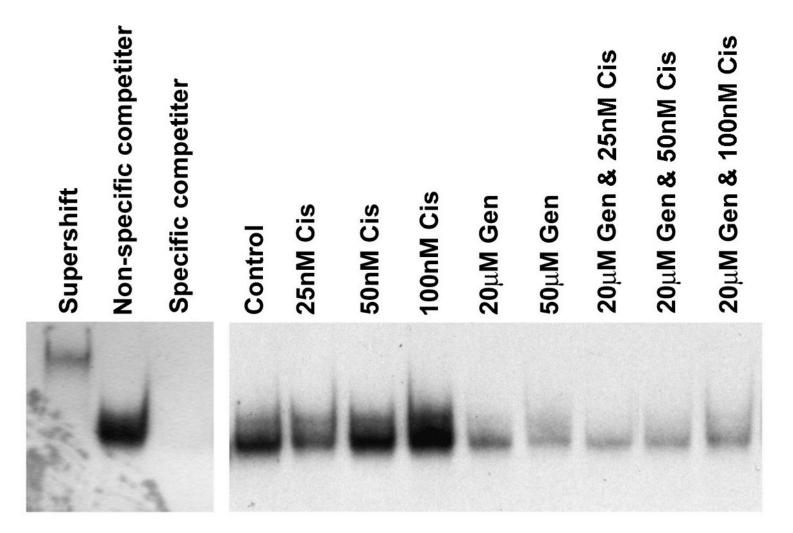
Genistein and PC3 Proliferation



Apoptosis assay for PC3 cells treated with genistein, docetaxel, cisplatin, adriamycin, or combination


Con: Control; G: genistein; D: docetaxel; Cis: cisplatin; A: adriamycin G+D: genistein followed by docetaxel; G+Cis: genistein followed by cisplatin. G+A: genistein followed by adriamycin. *: p < 0.01


Growth inhibition in PC3 cells treated with genistein, docetaxel, or combination measured by MTT


G: treated with 50 mM genistein for 48h; D: treated with 1nM docetaxel for 48h; G+D: treated with 30 mM genistein for 24h followed by 0.5 nM docetaxel for 24h. *: *p* < 0.05

EMSA for NF-kB activity in PC3 cells treated with docetaxel or cisplatin

EMSA for NF-kB activity in BxPC-3 cells treated with genistein, cisplatin, or combination

Cis: cisplatin; Gen: genistein.

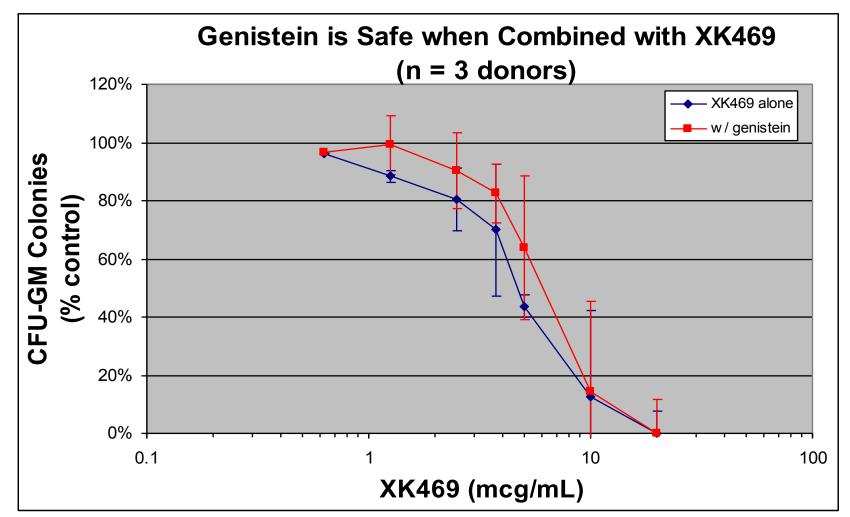
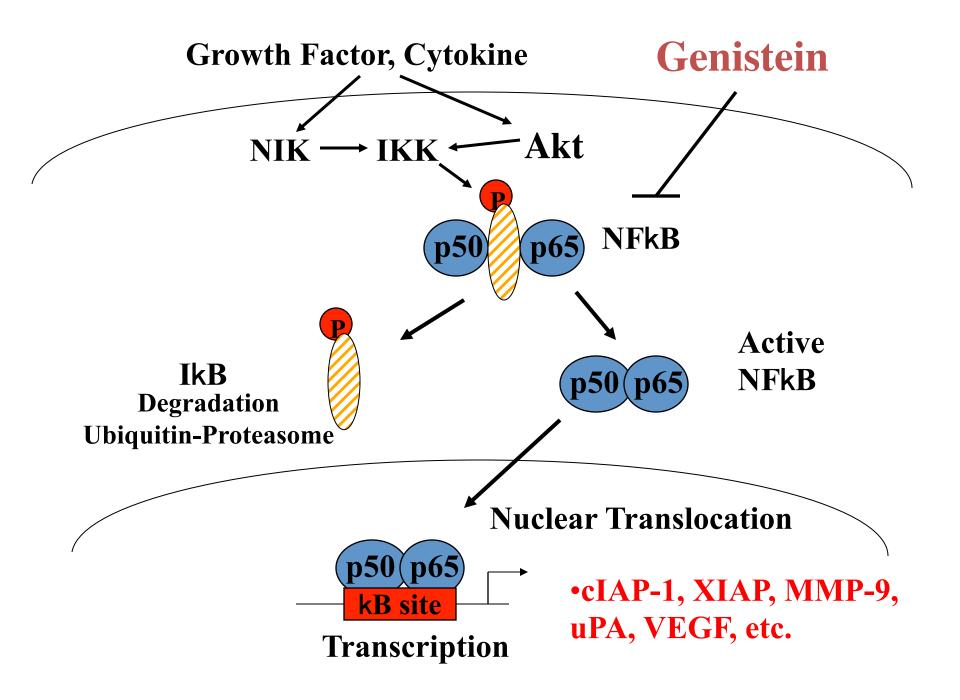
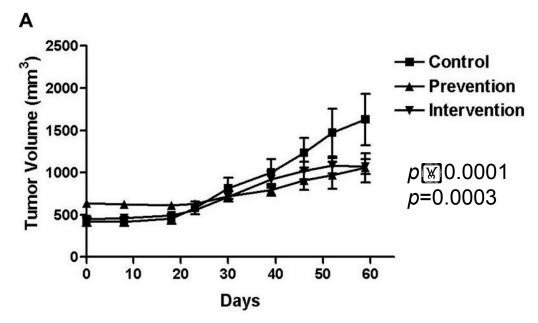
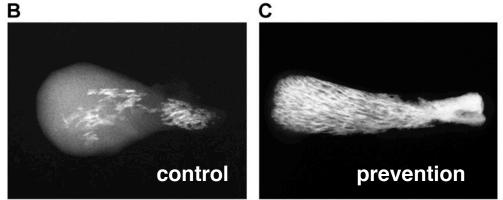





Figure 2. Three human bone marrows were processed to isolate the mononuclear cells, which were stimulated with rGM-CSF to produce clonogenic colonies of neutrophils and monocytes called CFU-GM. Toxicity of the investigational drug XK469 was quantified from inhibition of CFU-GM colony formation. The presence of 10-20 microM genistein did not change the potency of the toxic action of XK469 upon these hematopoietic cells.

Dietary Genistein and Experimental PC3 Bone Metastasis (Neoplasia 6:354-63, 2004)

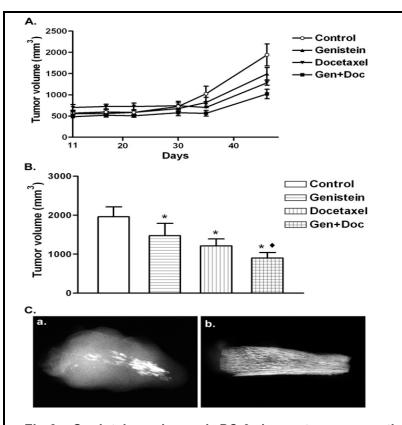


Fig-8: Genistein enhanced PC-3 bone tumor growth inhibition induced by docetaxel. A: Inhibitory effects of genistein and/or docetaxel on the growth of bone tumors formed by PC-3 cells in SCID-human mice. B: Comparison of the tumor volumes in each group on the day when all mice were sacrificed. (*: p<0.01, Genistein vs Control, Docetaxel vs Control, Genistein+Docetaxel vs Control; *: p=0.01, Genistein+Docetaxel vs Docetaxel). C: Ex vivo bone tumor X-ray showed more osteolysis and tumor growth in control group (a) than in genistein treatment group (b).

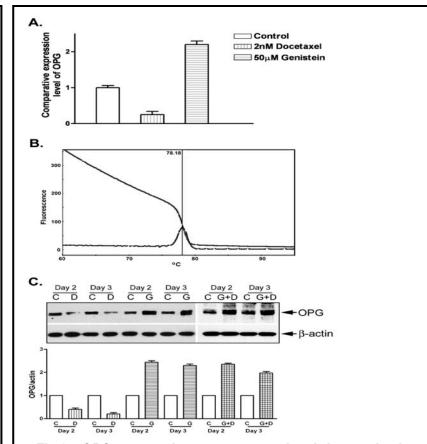
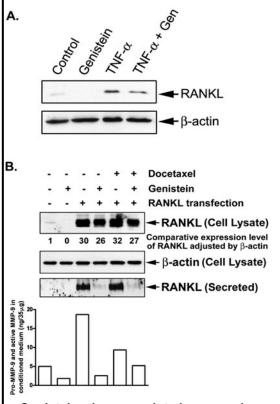
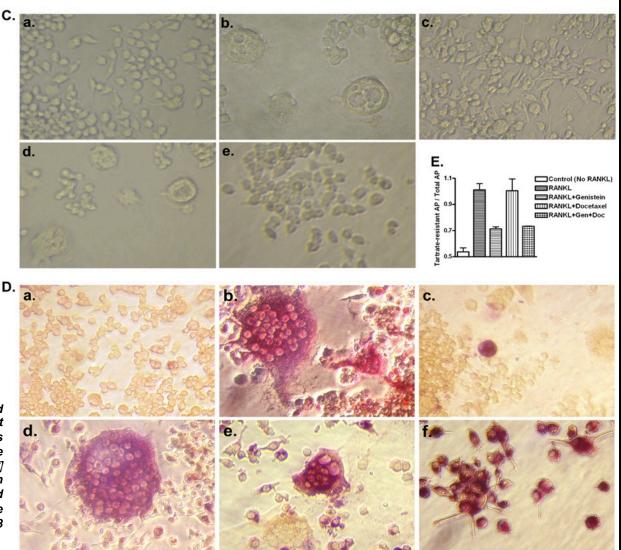
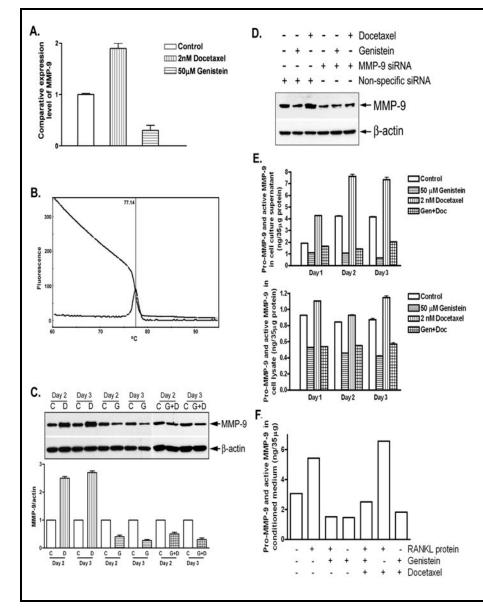
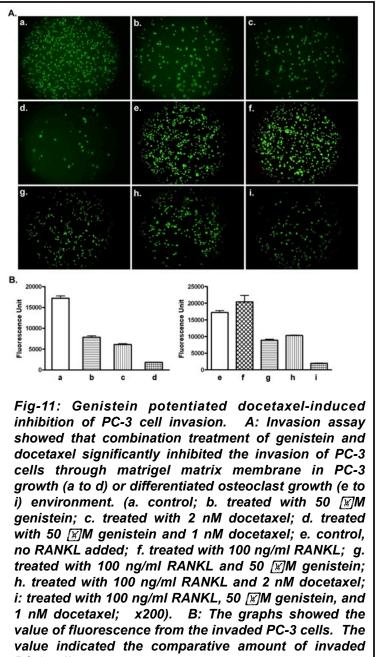




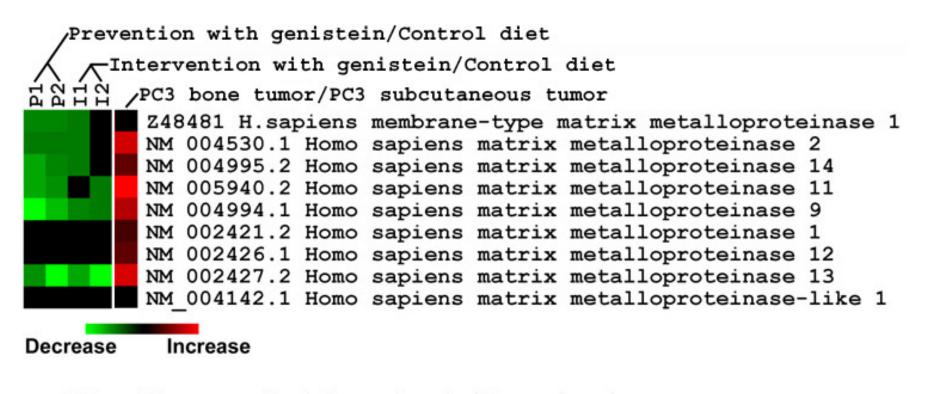
Fig-9: OPG expression was up-regulated by genistein and down-regulated by docetaxel. A: Real-time RT-PCR analysis of OPG mRNA expression in genistein or docetaxel treated PC-3 cells. B: Real-time RT-PCR melting curve showing the PCR product of OPG is pure (only one peak). C: Western Blot analysis of OPG protein expression in genistein and/or docetaxel treated PC-3 cells (C: Control; G: 50 M Genistein treatment; D: 2 nM Docetaxel treatment; G+D: 30 M Genistein and 1 nM docetaxel combination treatment).

Li Y et al. Cancer Res. 2006

Genistein down-regulated expression and secretion of RANKL and inhibited osteoclast differentiation. A: Western Blot analysis showed that 50 MM genistein inhibited the expression of RANKL and abrogated TNF-MM (100 ng/ml) induced expression of RANKL in PC-3 cells. B: Western Blot analysis showed that genistein significantly inhibited the secretion of RANKL in RANKL transfected PC-3 cells.

MMP-9 activity assay showed that genistein significantly inhibited activity of MMP-9 secreted by RANKL-transfected PC-3 cells. C: Genistein inhibited RANKL-induced RAW264.7 cell differentiation to osteoclasts. The multinucleated osteoclasts were observed. (a. control, no RANKL added; b. treated with 100 ng/ml RANKL; c. treated with 100 ng/ml RANKL and 10 M genistein; d. treated with 100 ng/ml RANKL and 0.5 nM docetaxel; e. treated with 100 ng/ml RANKL, 10 M genistein, and 0.5 nM docetaxel; x200). D: Genistein inhibited RANKL-induced RAW264.7 cell differentiation to osteoclasts (TRAP staining; x200). In figures a to e, tartrate was added during staining. Multi-nuclei and purplish to dark red granules were observed only in osteoclasts. (a. control, no RANKL added; b. treated with 100 ng/ml RANKL; c. treated with 100 ng/ml RANKL and 0.5 nM docetaxel; e: treated with 100 ng/ml RANKL; c. treated with 100 ng/ml RANKL and 0.5 nM docetaxel; b. treated with 100 ng/ml RANKL; c. treated with 100 ng/ml RANKL and 10 M genistein; d. treated with 100 ng/ml RANKL and 0.5 nM docetaxel; e: treated with 100 ng/ml RANKL; c. treated with 100 ng/ml RANKL and 10 M genistein; d. treated with 100 ng/ml RANKL and 0.5 nM docetaxel; e: treated with 100 ng/ml RANKL; c. treated with 100 ng/ml RANKL and 0.5 nM docetaxel; e: treated with 100 ng/ml RANKL, 10 M genistein, and 0.5 nM docetaxel). In figure f, no tartrate was added during TRAP staining. The purplish granules indicated total acid phosphatase (tartrate-resistant and tartrate-sensitive acid phosphatase). RAW264.7 cells contain tartrate-sensitive acid phosphatase. E: Graph showed the ratio of tartrate-sensitive acid phosphatase versus total acid phosphatase. The value indicated the comparative amount of osteoclasts in each sample.

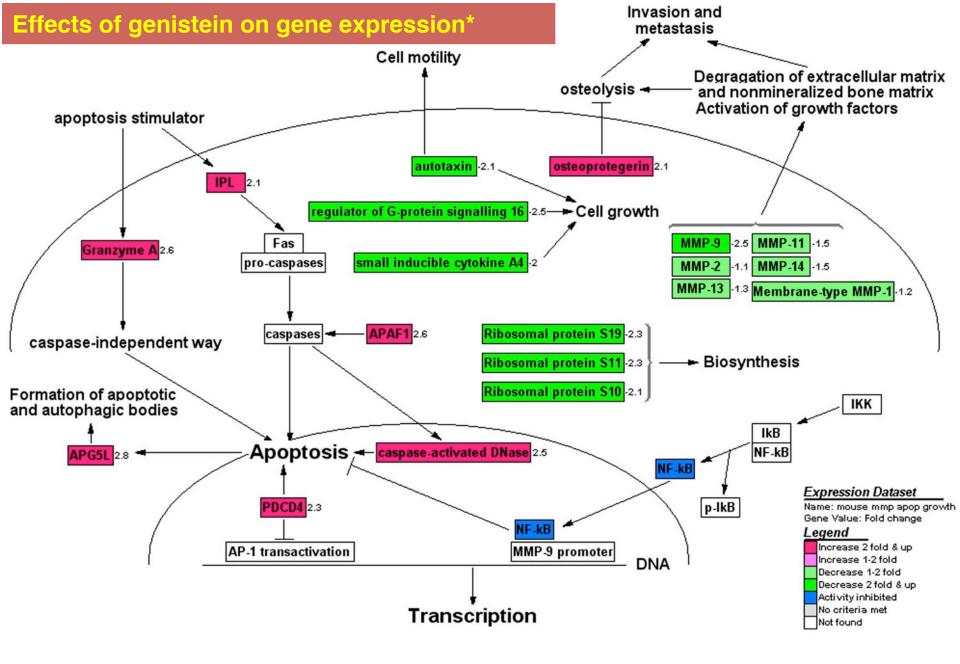




Fig-14: MMP-9 expression was up-regulated by docetaxel and down-regulated by genistein. A: Real-time RT-PCR analysis of MMP-9 mRNA expression in genistein or docetaxel treated PC-3 cells. B: Real-time RT-PCR melting curve showing the PCR product of MMP-9 is pure (only one peak). C: Western Blot analysis of MMP-9 protein expression in genistein and/or docetaxel treated PC-3 cells (C: Control; G: 50 IMM Genistein treatment; D: 2 nM Docetaxel treatment; G+D: 30 M Genistein and 1 nM docetaxel combination treatment). D: Western Blot analysis of MMP-9 protein expression in genistein or docetaxel treated PC-3 cells with or without MMP-9 siRNA transfection. E: MMP-9 activity assay showed that MMP-9 was up-regulated by docetaxel and down-regulated by genistein in PC-3 cell lysate and conditioned medium. F: MMP-9 activity assay showed that MMP-9 was up-regulated by docetaxel and downregulated by genistein in conditioned medium of PC-3 cell and RANKL induced RAW264.7 cell co-culture.

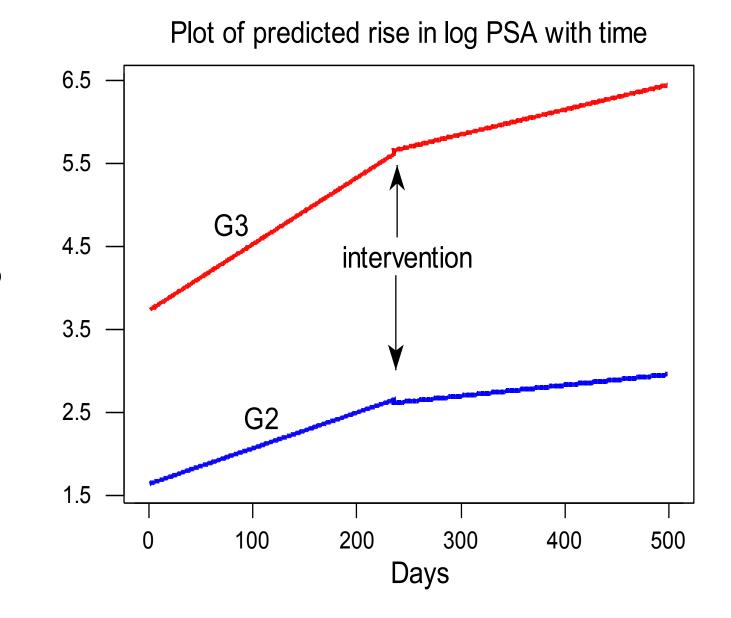
Li Y et al. Cancer Res. 2006

Li Y et al. Cancer Res. 2006

Effect of Dietary Genistein on MMP Gene Expression in Experimental Metastasis

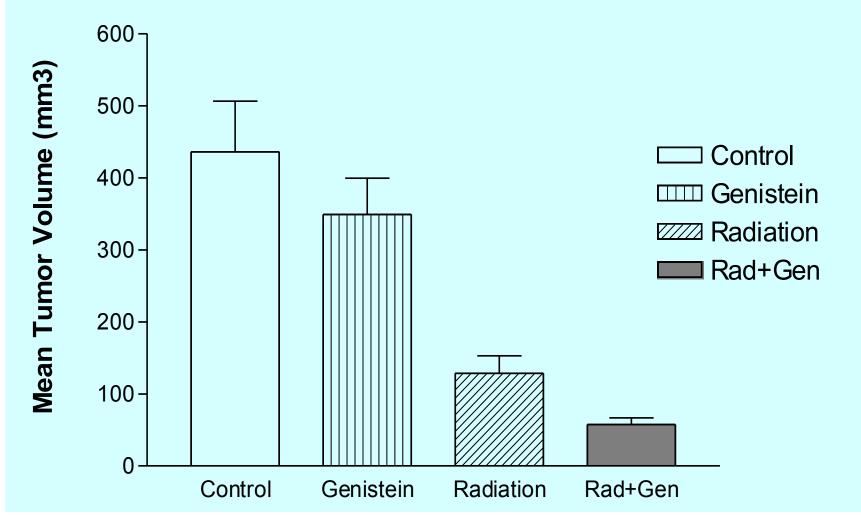

PC3 cells treated with genistein/No genistein treatment

Affymetrix Human Genome U95 or U133A Array


Cluster Analysis According to Biological Function

Numbers of altered genes in different categories in PC3 bone tumors after

Category	Up	Down
apoptosis	12	1
cell cycle arrest, negative regulation of cell proliferation and transcription	13	0
signal transduction, chemotaxis	10	7
regulation of transcription and protein biosynthesis	11	10
oncogenesis	8	4



*Based on in vitro and in vivo gene profiling with and without genistein

log PSA

Treatment of PC-3 Prostate Tumors with Radiation + Genistein in Nude Mice

Genistein-Radiation Pilot Study

- 42 patients with prostate cancer
- Randomized, placebo-controlled, phase 2 study
- 20 patients received soy isoflavones 200 mg/day for 3 months, starting with the first day of radiation, and 22 received placebo
- QOL questionnaires given at 3 and 6 months

Study Patients

Group 1 (Soy)		Group 2 (Placebo)		
Median Age = 60 y		Median Age = 65 y		
8 T1c, 3 T2a, 2 T2b		10 T1c, 2 T2a, 1 T2b		
Median Pre PSA	3.7	Median Pre PSA	4.9	
Median 4-6 month PSA	0.9	Median 4-6 month PSA	2	
PSA decrease	75.7%	PSA decrease	59.2%	

Genitourinary (GU) Toxicity

Soy	3M n=13	6M n=13	Placebo	3M n=13	6M n=14
GU toxicity		GU toxicity			
Leakage/Dripping of Urine	15.4% (2)	7.7% (1)	Leakage/Dripping of Urine	23.1% (3)	28.6% (4)
Big/Medium Problem with Frequency	38.5% (5)	0%	Big/Medium Problem with Frequency	38.5% (5)	7.1% (1)
Big/Medium Problem with Urgency	30.8% (4)	0%	Big/Medium Problem with Urgency	0%	0%
Function same as before RT or Better	92.3% (12)	92.3% (12)	Function same as before RT or Better	92.3% (12)	85.7% (12)

Erectile Function

Soy	3 M n=13	6 M n=13	Placebo	3 M n=13	6 M n=14
Erectile Function			Erectile Function		
Ability to Have Full Erections	69.2% (9)	77% (10)	Ability to Have Full Erections	61.5% (8)	57.1% (8)
Reduction in Ability to Have Erections	15.4% (2)	15.4% (2)	Reduction in Ability to Have Erections	46.2% (6)	57.1% (8)
Function Same as Before RT or Better	84.6% (11)	84.6% (11)	Function Same as Before RT or Better	61.5% (8)	57.1% (8)

Effects of Genistein on CpG Methylation and Histone Acetylation Have Been Reported From Several Groups

Cancer Prevention

Clin Cancer Res 2005;11(19) October 1, 2005

Reversal of Hypermethylation and Reactivation of $p16^{INK4a}$, RAR β , and MGMT Genes by Genistein and Other Isoflavones from Soy

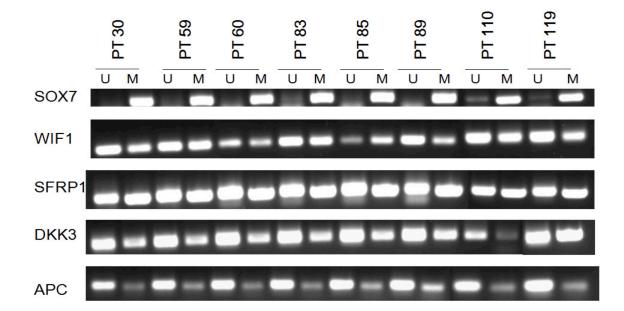
Ming Zhu Fang,¹ Dapeng Chen,¹ Yi Sun,¹ Zhe Jin,¹ Judith K. Christman,² and Chung S. Yang¹

Int. J. Cancer: **123,** 552–560 (2008) © 2008 Wiley-Liss, Inc.

Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells

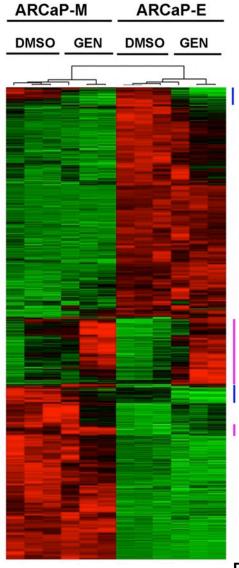
Nobuyuki Kikuno¹, Hiroaki Shiina², Shinji Urakami², Ken Kawamoto¹, Hiroshi Hirata¹, Yuichiro Tanaka¹, Shahana Majid¹, Mikio Igawa² and Rajvir Dahiya^{1*}

¹Department of Urology, Veterans Affairs Medical Center and University of California, San Francisco, San Francisco, CA ²Department of Urology, Shimane University School of Medicine, Izumo, Japan

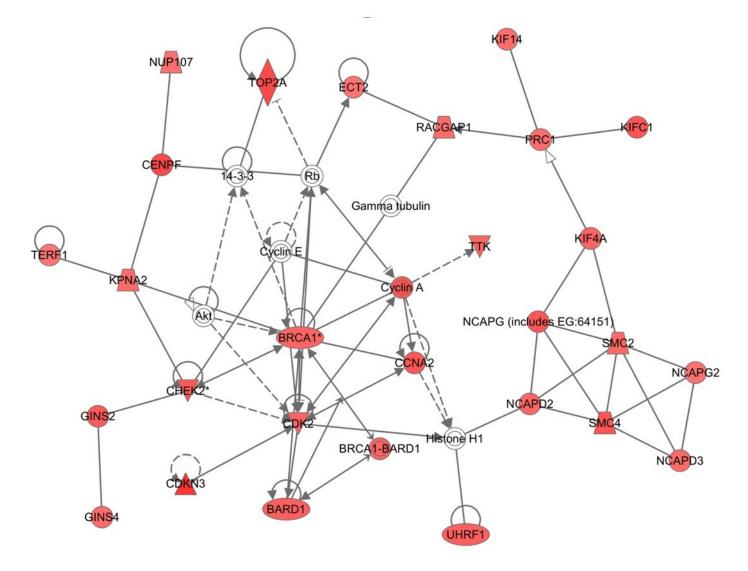

Original Article

Cancer January 1, 2010

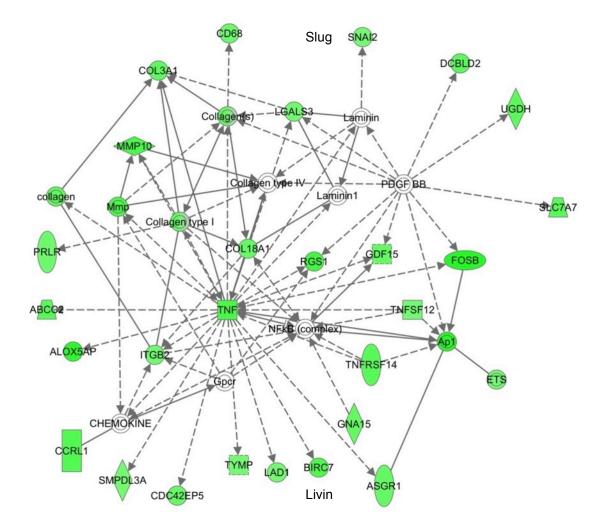
Genistein Reverses Hypermethylation and Induces Active Histone Modifications in Tumor Suppressor Gene B-Cell Translocation Gene 3 in Prostate Cancer


Shahana Majid, PhD¹; Altaf A. Dar, PhD²; Varahram Shahryari, MD¹; Hiroshi Hirata, MD, PhD¹; Ardalan Ahmad, MD¹; Sharanjot Saini, PhD¹; Yuichiro Tanaka, PhD¹; Angela V. Dahiya¹; and Rajvir Dahiya, PhD¹

Wnt Pathway Inhibitory Genes are hypermethylated in prostate cancer patients

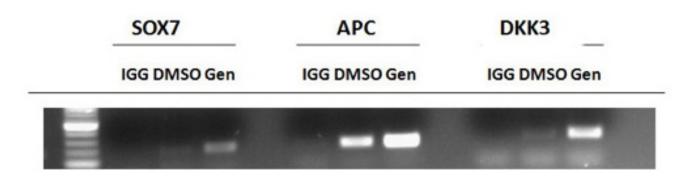

Phillip et al, BMC Cancer, 2012, 12(1):145.

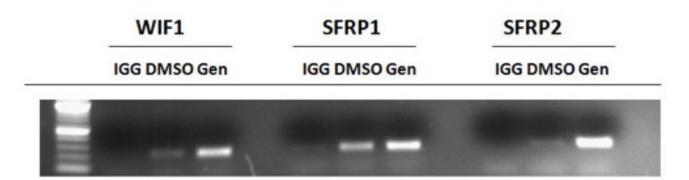
Whole Genome Expression Profiling Of Prostate Cancer Cells Treated with Genistein



Phillip et al, BMC Cancer, 2012, 12(1):145.

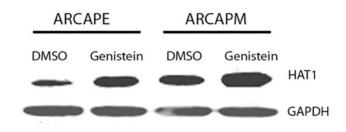
Genistein Upregulates Genes Involved in Cell Cycle Responses to DNA Damage



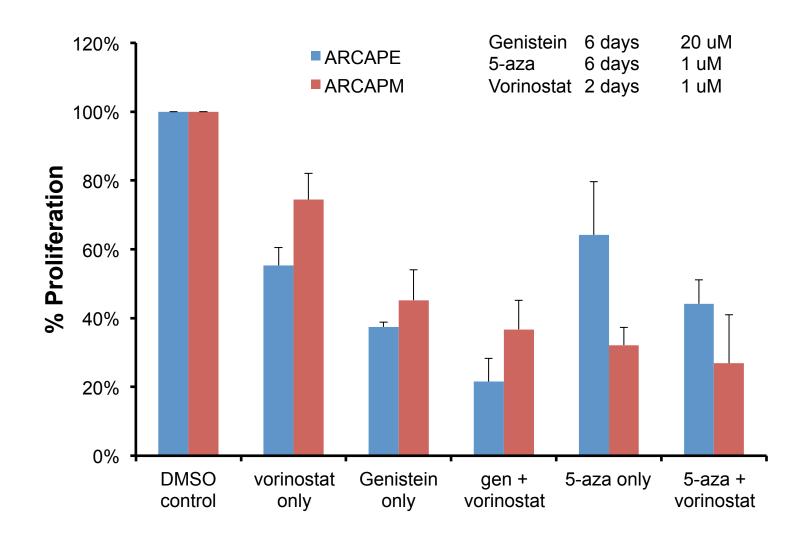

Genistein Downregulates Genes Involved in the TNF-NFKB Pathway

Genistein induces Acetylation of Histone H3K9

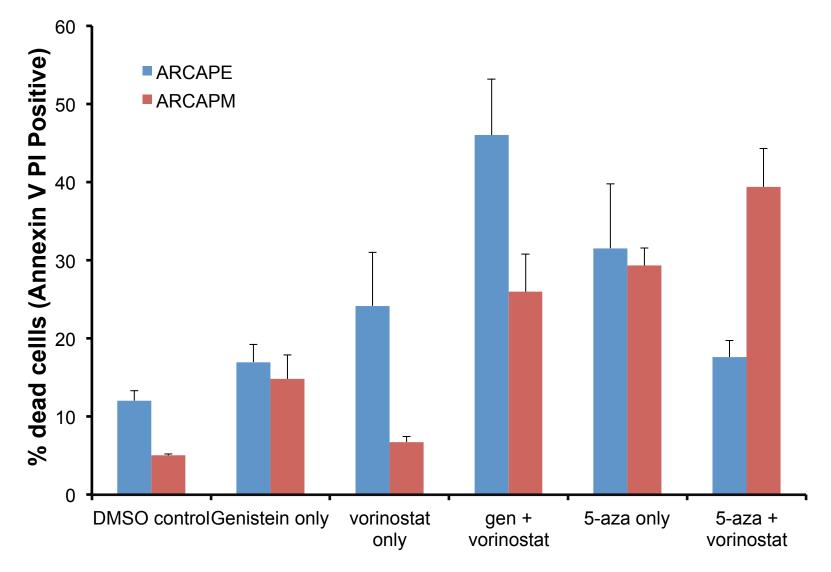
Anti-Ac-H3K9 Chromatin Immunoprecipitation



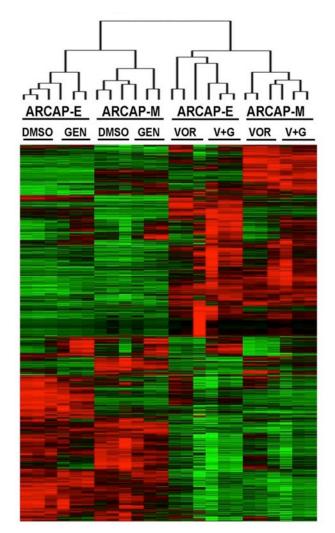
Phillip et al, BMC Cancer, 2012, 12(1):145.


Genistein induces expression of HAT1

Histone Acetyl Transferase 1 (HAT1)



Phillip et al, BMC Cancer, 2012, 12(1):145.


Genistein synergizes with HDACi Vorinostat to inhibit proliferation

Genistein synergizes with HDACi Vorinostat to induce apoptosis

Whole Genome Expression Profiling Of Prostate Cancer Cells Treated with Genistein, Vorinostat, or Genistein plus Vorinostat

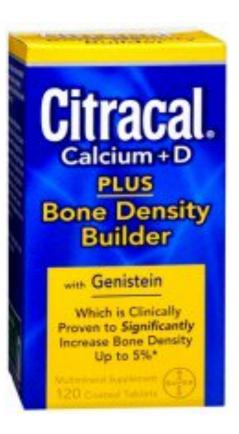
Genistein/Vorinostat Upregulates Genes Involved in Cell Cycle Responses to DNA Damage

GO Term	Biological Process	Count	p-value	IPA Biological Function	Count	p-value
GO:0006281	DNA repair	45	1.03E-13	DNA Replication, Recombination, and Repair	39	7.18E-12
GO:0008219	Cell Death	48	2.73E-03	Cell Death	122	1.95E-10
GO:0022403	Cell Cycle	57	1.63E-14	Cell Cycle	105	2.70E-09
GO:0006915	Apoptosis	43	1.37E-03	Apoptosis	149	1.13E-07
GO:000075	Cell Cycle Checkpoint	17	1.45E-06	DNA checkpoint control	13	1.90E-06

AMPK and PPAR agonists are exercise mimetics

Ronald M. Evans et al: Cell 134:405-415, 2008

- Natural compounds may mimic or potentiate the effects of exercise and may prevent the development of metabolic syndrome:
 - Natural compounds, such as genistein, have endurance-enhancing activities, but their exact mechanisms remain unclear
- Studied endurance capacities of mice in a treadmill running test.
- **PPAR agonist and exercise training synergistically** increased myofibers and running endurance in adult mice.
- In sedentary mice, 4 weeks of treatment with an AMPK agonist induced metabolic genes and enhanced running endurance by 44%.


Genistein improves cardiovascular risk factors

Atteritano M et al. Effects of genistein on predictors of cardiovascular risk in osteopenic, postmenopausal women: a two-year randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 92:3068-75, 2007.

54 mg genistein + Ca + vitamin D, was associated with favorable effects on glycemic control and cardiovascular risk markers

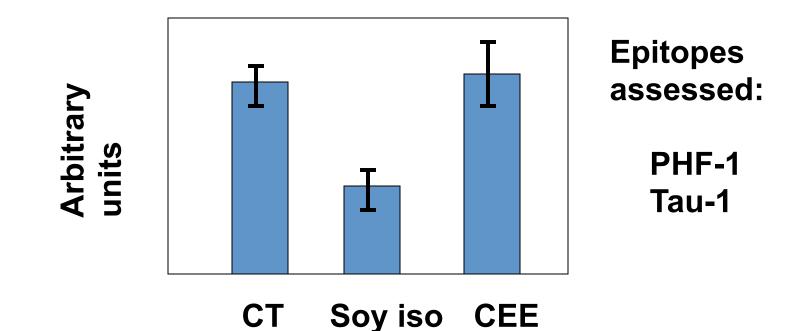
Genistein vs Placebo

Citracal plus Genistein

Citracal (Calcium + Vit D)

Genistein, insulin sensitivity and memory

Alonso A et al. Age 2010.

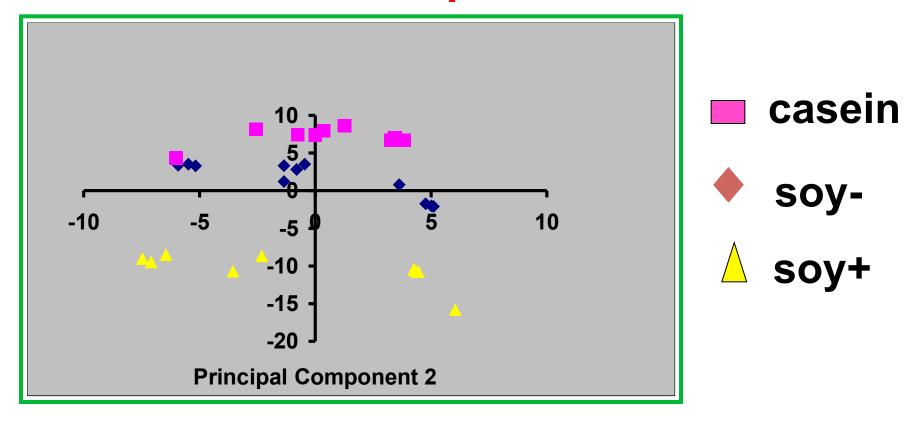

In aged ovariectomized female rats

GENISTEIN

increased insulin sensitivity

improved spatial memory

Soy isoflavones, but not Premarin, attenuated AD-relevant protein phosphorylation in primate brain.



(from H Kim et al., 2001, BioFactors)

Relationship between neuroprotective actions by soy versus estrogen Hyperphosphorylated tau tau hyperphosphorylation Soy? depolymerized stable microtubule microtubules; (viable neuron) (dysfunctional neuron) **Estrogens**?

(Kim, 2001)

Principal Component Analysis indicates that soy+, soy- and casein-based diets, had non-overlapping global effects on brain proteins

Isoflavones and cognitive function in older women: the Soy and Postmenopausal Health In Aging (SOPHIA) Study

6-month, double-blind, randomized, placebo-controlled clinical trial

Study subjects were in good health, postmenopausal and not using estrogen replacement therapy

Randomized to active treatment (n = 27) two pills per day, each containing 55 mg of soy-extracted <u>isoflavones</u> (110 mg per day) <u>or placebo</u> (n = 26).

Cognitive function tests administered at baseline and follow-up included: Trails A and B, category fluency, and logical memory and recall (a paragraph recall test assessing immediate and delayed verbal memory).

Kritz-Silverstein D; Von Muhlen D; Barrett-Connor E; Bressel M. Menopause. 10:196-202, 2003.

Isoflavones and cognitive function in older women: Soy & Postmenopausal Health In Aging (SOPHIA) Study.

At baseline, all women were cognitively intact; there were no significant differences by treatment assignment in age, education, depressed mood, or cognitive function (all P values > 0.10).

The women in the treatment group did consistently better, both as compared with their own baseline scores and as compared with the placebo group responses at 6 months.

Comparisons of <u>percentage change in cognitive function</u> between baseline and follow-up showed <u>greater improvement in category fluency</u> for women on active treatment as compared with the case of those on placebo (P = 0.02) and showed greater improvement on the other tests of verbal memory and Trails B.

Soy isoflavones ameliorate the adverse effects of chemotherapy in children

Tacyildiz N, Ozyoruk D, Yavuz G, Unal E, Dincaslan H, Dogu F, Sahin K, Kucuk O. Nutr Cancer. 2010;62(7):1001-5.

- 9 cycles of chemotherapy were administered without genistein, and 57 cycles with genistein (8 mg/day).
- Patients had less myelosuppression, mucositis, and infection when they received their chemotherapy with genistein.
- During supplementation, serum genistein levels were 2-6 times higher compared to presupplementation levels.
- Patients who received abdominal radiation reported less pain and diarrhea when they took the genistein supplement.

Summary

- Genistein
 - Antioxidant (prevents DNA damage)
 - Anti-inflammatory (IL-1, IL-6 inhibition)
 - DNA demethylation
 - Histone acetylation
 - NFkB, RANKL, VEGF, MMP, EMT inhibition
 - Enhances chemo/RT
 - Reduces toxicities of chemo/RT
 - Potentiates immune function (anti-viral, anti-bacterial)

Genistein in survivorship research

- <u>Opportunities for prevention of short term and long</u> term adverse effects of radiation and chemotherapy:
 - » Second primary tumors
 - » Cognitive decline
 - » Cardiac toxicity
 - » Myelosuppression
 - » Pulmonary toxicity
 - » Neurotoxicity (CNS and peripheral neuropathy)
 - » Nephrotoxicity
 - » Hepatotoxicity
- <u>Improved efficacy</u> of chemo/RT and targeted therapy
- Genistein is a <u>safe</u>, <u>orally bioavailable</u> compound which has been <u>well tolerated</u> in clinical trials

Let food be your medicine. Hippocrates

okucuk@emory.edu