INTRODUCTION
Accurately diagnosing clinically significant prostate cancer remains a challenge, especially when relying on the current “gold standard:” prostate needle biopsy, DRE, and serum PSA. There have been a number of recent additions to our armamentarium to aid in the identification of localized high-risk prostate cancer. Ideally, limiting biopsies to men identified at risk of high grade disease should be the goal of these tests. At the same time, markers are needed to aid in verifying risk stratification of men diagnosed with a low risk disease. Several risk stratification nomograms based on PSA, Gleason score, and DRE exist, however many men predicted to have low risk disease based on these nomograms are upgraded to higher risk at radical prostatectomy (1). Here, we provide a concise and thorough review of available biomarkers and genomic tests developed to address these issues. Additionally, we provide a discussion of the challenges, implementation, and costs associated with these tests. Finally, we propose an algorithm incorporating the latest data for clinical use.

DEFINING THE CHALLENGE:
TO SCREEN OR NOT TO SCREEN?
Prostate cancer diagnosis and staging remains a diagnostic dilemma due to a variety of factors. First, the disease itself is in an anatomically difficult location, with the prostate wedged at the base of the pelvis. Examining or palpating the prostate by digital rectal exam (DRE) is highly provider dependent, and based on experience, as well as patient
If your patient has prostate cancer there are three things about the Decipher test you should know.

First, Decipher is a new and proven genomic test, developed by analyzing the entire genome of prostate tumors. Decipher has repeatedly demonstrated that it can predict the risk of metastasis more accurately than both traditional diagnostic tools and existing genomic tests.1, 2, 3

Second, Decipher can be used after a biopsy diagnosed with prostate cancer and/or after radical prostatectomy. Decipher Biopsy can help guide whether the right path for your patient is active surveillance, definitive local therapy alone (surgery or radiation), or intensification with multi-modal therapy.1 Decipher Post-Op can help determine if and when radiation is likely to decrease the chance of metastasis after surgery.4, 5

Third, the company behind Decipher, GenomeDx, is a leader in prostate cancer testing and is totally committed to helping patients manage their cancer treatment through increasingly accurate, individualized information.

So get the accurate, personal information you need to guide your patient’s next step. For immediate information, visit us at DecipherTest.com.

Many indicators and tests tell you where you are. Only Decipher tells where you will go, and when.

References:
comfort with the exam. Also, the finding of an "abnormality" on exam provides little information regarding grade or stage of disease. Second, the PSA test itself can be highly variable and subject to fluctuations based on various patient activities, including prostate massage and ejaculation. It is commonly elevated in benign conditions, such as BPH and prostatitis. The United States Preventative Task Force (USPTF) issued a grade D recommendation regarding PSA for prostate cancer screening (2), further complicating the picture. In short, they recommended that physicians should not pursue PSA screening unless they are prepared to engage in shared decision making to enable an informed choice by patients, and that the harms of prostate biopsy outweigh potentially finding an aggressive prostate cancer. The American Urological Association (AUA), along similar lines, recommends shared decision making taking into account a patient’s preferences when deciding on PSA monitoring (3). Third, various specialties screen for prostate cancer and interpret results of PSA tests, including internal medicine, family medicine, and urology providers. In fact, the majority of the PSA tests ordered (over 90%) in the United States are ordered by internal medicine doctors and family practitioners, likely reflecting confusion over the multitude of guidelines and opinions on CaP screening in current literature (4).

Given these challenges, there has been a large push to develop new diagnostic tests, algorithms, and paradigms to inform prostate cancer risk stratification and guide screening and treatment recommendations. Much of the recent literature has been aimed at uncovering tools that might help select patients whose disease will be more aggressive and benefit from biopsy and subsequent treatment if necessary, including refining the use of the PSA, as well as development of novel prostate cancer markers (PCMs). The ultimate goal in searching for new diagnostics is a reduced number of unnecessary biopsies not just by better distinguishing benign from malignant disease but by identifying men harboring high risk disease (i.e. men harboring ≥ Gleason 4 pattern disease).

PROSTATE CANCER MARKERS

Prostate cancer markers (PCMs), like all biomarkers, are molecules that can be found in blood, tissue or body fluids that are a sign of a normal or abnormal process (5). Both older and novel techniques have been evaluated and explored, including making the PSA test more useful (PSA doubling time, velocity, etc), as well as exploring new fields, such as proteomics. Proteomics takes genomics a step further by evaluating the cell's actual proteins and their function, thus better demonstrating cellular activity (6). Given the rapid advancement of the various subtests within the biomarker development arena, there understandably remains a great deal of confusion regarding these tests, and when to use them. Here, we hope to clarify the nature and role of these biomarkers.

MODEL OF ORGANIZATION

In deriving a model by which to organize and clarify PCMs, several models have been created. Crawford et al have developed the previous “bucket model:” patients are placed into various “buckets,” designated as “whom to biopsy?”, “whom to rebiopsy?”, and “what is the disease aggressiveness in the setting of a positive biopsy or after intervention?” (Fig. 1). Then, various PCMs can be utilized for patients placed in each bucket. For example, one can use the prostate health index (phi) to determine “whom to biopsy.” The bucket model can also be combined into a treatment algorithm (Fig. 2), which incorporates PSA cutoffs to help determine when a PCP should refer to urology, as well as which PCMs are useful at various stages of evaluation.

MARKERS TO AID IN DECIDING WHOM TO BIOPSY (TABLE 1)

Arguably the most utilized marker of prostate disease, prostate specific antigen (PSA), is currently used as a screening test as well as a monitor of response to treatment. Prior the USPTF recommendations against PSA screening, close to 19 million men in 2013 underwent PSA screening tests, leading to over 240,000 new diagnoses of prostate cancer that year (7). 2016 data project approximately 181,000 new cases, likely reflecting decreased screening (8). Despite PSA being specific to the prostate, using PSA as a biomarker of CaP is controversial at this time, especially given that benign diseases such as BPH can cause elevations in PSA (9). Most men with an “elevated PSA” do not have prostate cancer. In fact, of the men biopsied secondary to elevated PSA, only about 25% have a prostate cancer, most of which are low risk (10). PSA is made by prostatic cells, so in the setting of post-prostatectomy follow up, it is useful to determine the adequacy of treatment as well as possible local recurrence or metastatic disease. Many studies have attempted to answer the question: should men be regularly screened for prostate cancer? The large PLCO screening trial found no survival benefit to screening (11), however a large European trial with eleven years of follow up did find a survival benefit (12), as did smaller studies of men with no comorbidities (13). While much of the recent literature has focused on whether or not to screen, other...
authorities have evaluated how to utilize the PSA test better. Crawford and colleagues evaluated men over 40 years of age with PSA levels between 1.5-4.0 ng/mL, which they deemed the “Early-Warning” PSA zone, and found patients with PSA greater than or equal to 1.5 have an increased risk of developing CaP (14). This study, which included 21,000 men in the Henry Ford System, 29% of them African American, had follow up out at a minimum of 5 years for all patients. Extrapolating this data, a cutoff of 1.5 ng/mL when checking PSA should trigger concern and either evaluation by urologist and/or additional testing (Fig. 2). Further efforts on improving the performance of the PSA have come in a variety of new tests, including the phi, mentioned below. PSA density, velocity, and doubling time have also been used in an effort to improve the use of PSA.

Prostate Health Index (phi)
The Prostate Health Index, or phi, is a test that was designed to fill in the “diagnostic gap” between obtaining a serum PSA test and deciding on observation vs biopsy based on those results. Specifically, phi was approved by the US FDA in 2012 to improve the early detection of prostate cancer in men with PSA in 4-10 ng/mL range. This test takes advantage of the PSA isoform [-2]proPSA, which has been found to be associated with prostate cancer (15). When combining this isoform with both total and free PSA in an algorithm found the Beckman Coulter Access instrument, the phi is thus calculated. A higher number on the phi correlates with a higher probability of CaP, with a phi score of greater than 55 being associated with a 52.1% chance of malignancy (16). Catalona et al. found that the phi was approximately three times more specific than PSA for detection of prostate cancer (17). The phi can also help predict aggressive prostate cancer (GS ≥7), however data supporting it use in this regard is limited (18). The NCCN incorporates the phi into early detection guidelines as a reflex test for both initial biopsy or repeat biopsy (19). As such, its clinical utility is broad and applicable to many patients.

4Kscore
The 4Kscore (OPKO Health, Inc.) takes advantage of our current understanding of human Kallikreins, and is designed to identify men at risk for aggressive prostate cancer. Kallikreins are a collective group of serine proteases, and are involved in various body processes, including semen liquefaction in the case of PSA (human Kallikrein 3). Specifically, human Kallikrein 2 (hK2) has received much attention, as it been found to be highly expressed in high grade prostate cancer (20,21). The 4Kscore is an algorithm that combines results obtained from a serum sample of total PSA, free PSA, intact PSA, hK2, and combines it with patient biopsy history, age, and DRE results (22). 4Kscore is the probability of an individual’s percent risk of having aggressive, high grade Gleason 7 or higher prostate cancer if a bi-
opsy were to be performed. Per the NCCN, the 4Kscore is useful prior to first biopsy, a first biopsy with focal high grade prostate intraepithelial neoplasia (HGPIN), or in the setting of a negative first biopsy with persistent clinical concern (19). A low risk result is a 4Kscore of less than 7.5%, with high risk scores being greater than or equal to 20%. Those with intermediate or high risk 4Kscores should be referred to urology for evaluation, as there was a 5.6% chance of CaP distant metastasis at 10 years if left untreated. Low risk scores are useful in that roughly 99% of men studied with PSA >2ng/mL with these scores will not have metastatic prostate cancer at 10 years. As such, men with low risk scores can avoid immediate biopsy, and can be safely followed as they are at very low risk of adverse outcomes 10-20 years later (23).

MARKERS TO AID IN DECIDING WHOM TO REBIOPSY (TABLE 2)

4Kscore

SelectMDx (MDxHealth) is a new urine based molecular test that utilizes a reverse-transcriptase PCR assay based algorithm to determine the likelihood of high grade vs. low grade prostate cancer when considering biopsy in patients with risk factors. Interestingly, this test was developed by the investigators of the PCA3 test. SelectMDx is a useful test in determining disease prognostication, as it provides results of probabilities of both low grade and high grade disease on biopsy. The test combines the biomarkers KLK3, HOXC6 and DLX1 mRNA from urinary sediment with PSA density and DRE (27). HOXC6 and DLX1 are both genes found previously to be expressed in high grade prostate cancer, and have been shown to predict GS >7 on prostate biopsy (28). The SelectMDx test performed well in validation studies, with an AUC of up to 0.9. Validation studies also suggested that when a NPV cut off of 98% was used for high risk prostate cancer, a greater than 50% reduction in unnecessary biopsies could be obtained using the SelectMDx methodology (27). A ‘low risk’ result lends a 98% probability that there is no high grade cancer present. Taken together, the SelectMDx test results provide useful data in terms of percent probability of either low risk vs high risk disease on biopsy, making shared decision making discussions more objective and ultimately more useful for the patient.

MARKERS TO AID IN DECIDING WHOM TO REBIOPSY (TABLE 2)

4Kscore

As mentioned above, the 4Kscore is also included in the NCCN guidelines for determining which men to rebiopsy (19). Given its ability to predict probability of low vs high risk cancers, it may help men and their physicians in deciding the need for repeat biopsy based on the patient’s specific probability of low vs high risk disease on subsequent repeat biopsy.

PCA3

Another test taking advantage of advancements in molecular biology is the PCA3 test. Prostate Cancer Gene 3 (PCA3), formerly referred to as DD3 after its discovery in the late 1990’s (29), is a gene that is highly overexpressed in prostate cancer cells
PCA3 is the first gene based test specific to prostate cancer, offered by Hologic, Inc., and marketed as Progensa PCA3 assay in the USA. Using a post digital rectal exam urine sample, the specimen is analyzed for both PCA3 mRNA, as well as PSA mRNA to generate a PCA3 score (PCA3 Score=PCA3 mRNA/PSA mRNA x 10^-3). With an increasing PCA3 score, there is a greater probability of positive biopsy on needle biopsy of the prostate, with a PCA3 score of 35 being used as the recommended diagnostic cutoff. Unlike PSA, PCA3 is not affected by prostate volume. It has regulatory approval for use in patients who are suspected of having CaP based off of PSA alone or in addition to a suspicious DRE, who have had a previous negative needle biopsy of the prostate. Specifically, those who have had previous negative biopsies in the past were found to have a 58% sensitivity and 72% specificity for positive 2nd biopsy when using a PCA3 score cutoff of 35. Modern use of the PCA3 includes its incorporation with other testing modalities. For example, when coupled with MRI, the PCA3 score had a positive predictive value of 91.66%, with a negative predictive value of 96% in one series. Overall, the PCA3 score is useful in determining need for repeat biopsy in the setting of a negative first time biopsy, and in conjunction with other tests and/or nomograms. Still, the PCA3 is not itself capable of detecting GS ≥ 7, unlike other tests that are available such as SelectMDx or the 4k score.

ConfirmMDx

ConfirmMDx is also available through MDxHealth, and provides a "second look" for patients with a negative previous biopsy. ConfirmMDx applies advancements in epigenetics to interrogate possible abnormal DNA methylation changes associated with "field effects" around prostate cancer tumors. The "field effect," first described in the 1950's by Slaughter et al (34), is DNA methylation change that occurs secondary to the cancer process itself in histologically normal appearing tissues adjacent to cancer foci. Importantly, identifying field effect can help identify falsely negative pathologic results. It is thought that less than <1% of all prostate tissue is biopsied on standard sextant TRUS biopsy of the prostate, lending to a 20-30% false negative rate. Given this, ConfirmMDx was designed in part to evaluate tissues that are seemingly histologically normal under the microscope for abnormal changes at the DNA level (i.e., methylation). In a sense, the test helps to "expand the circumference" of the original biopsy specimen. The test uses a quantitative PCR assay to identify abnormally methylated genes from tissue that has undergone epigenetic changes due to its proximity to CaP cells. Specifically, the test evaluates GSTP1, APC, and RASSF1 gene array, with GSTP1 the most widely studied epigenetic biomarker currently. The ConfirmMDx test has been validated through numerous studies. The Europe-based MATLOC study highlighted the test’s ability to confirm the absence of cancer in histopathologically negative biopsy cores, demonstrating a NPV of 90% for all risk cancers. This is in comparison to histopathology alone, which has a NPV of 65-75% (40). Additionally, the multi-institutional USA-based DOCUMENT study revealed that ConfirmMDx was the most significant predictor of prostate cancer detection on repeat biopsy when compared to age, PSA, and HGPIN vs Atypia on initial biopsy as independent predictors of prostate cancer of repeat biopsy (41). Recent refinements...
of the analytics used in ConfirmMDx have led to the creation of the EpiScore, which analyzes the intensity of DNA methylation to further stratify malignancy-positive men into high vs low risk, with an associated 96% NPV for high risk disease (42). Ongoing studies (the PASCUAL study, Neal Shore, expected 2017) are currently being performed in an effort to verify previous data suggesting that ConfirmMDx actually changes physician ordering patterns in clinical practice and reduces repeat biopsies (43). In short, the test is useful in patients with a negative biopsy, being considered for repeat biopsy based on clinical factors.

TMPRSS2-ERG
The TMPRSS2-ERG protein variant is found in 40-80% of prostate cancer, making it the dominant genetic variant. TMPRSS2-ERG is a fusion protein of the transmembrane protease serine 2 gene and the v-ets erythroblastosis virus E26 oncogene homolog gene. Analysis is done on post-DRE urine sediment, and the quantitative results are taken into account along with PSA density, Gleason score, tumor density, and number of positive cores. Together, these are known as the Epstein criteria, and can be predictive of clinically significant prostate cancer (44). The results of this test can also be combined with the PSA and PCA3, and is available through the University of Michigan as the MiPS test. The MiPS test has a sensitivity of 80% and specificity of 90% for detection of prostate cancer (GS >6) on subsequent diagnostic needle biopsy (45), helping to reduce unnecessary biopsies.

PTEN
PTEN (Phosphatase and Tensin) is a tumor suppressor gene, that when deleted, portends a poor prognosis in prostate cancer patients. The test is performed via a FISH assay on prostate biopsy tissue, and can determine hemizygous vs homozygous gene deletion. There is a large body of literature showing deletion of the PTEN gene can lead to all of the following: higher Gleason grade, cancer progression, post treatment recurrence, advanced local disease as well as metastatic disease, and death (46). It is useful in determining risk of cancer progression is patients initially deemed low risk, and whether or not treatment vs observation may be appropriate. It can also help in determining need for rebiopsy, especially in the setting of atypia or HGPIN (47). Interestingly, PTEN/TMPRSS2:ERG combination tests have been commercialized, with improved determination of the risk of disease progression. This can help in determining the need for immediate re-biopsy vs monitoring (48).

MARKERS TO AID IN PREDICTING DISEASE AGGRESSIVENESS AND TREATMENT DISCUSSIONS (TABLE 3)

Know Error
Prior to treating a patient, the provenance of the patient’s biopsy sample must be assured. The Know Error system was created to address the issue of biopsy or biomarker contamination, and avoid providing an incorrect diagnosis to the patient. Occult specimen swapping or contamination with another patient’s specimen is collectively known as Specimen Provenance Complications (SPCs), and occur at rates as high as 3-5%, leading to possible patient and physician angst and harm (49). Specimen provenance testing assays confirm the tissue being analyzed is actually the index patient’s tissue. Know Error uses a bar coding and a comparative buccal swab-to-biopsy DNA specimen provenance assay to ensure that biopsy and/or biomarker tests are free of contamination. Specimen provenance complications of prostate biopsies were found to occur on average in 1 of every 200 prostate biopsies in a recent series, with an estimated $880 million spent on extraneous health care and medical-legal costs (50). Utilizing this type of testing can be useful if the clinical picture does not correlate with the biomarker or biopsy data.

Utilizing this type of testing can be useful if the clinical picture does not correlate with the biomarker or biopsy data. with much the analytical validation for the prostate cancer assay based off of these previous assays (51). Oncotype Dx for prostate cancer is able to analyze genes from parafin embedded prostate biopsy needle specimens, and requires only 1mm of prostate tissue to perform the analysis. The test targets four distinct cellular pathways to analyze 12 target genes thought to be related to prostate cancerization. When combined with 5 reference genes, an algorithm is used to ultimately generate a GPS, or Genomic Prostate Score, ranging from 0-100. Higher scores suggest more aggressive disease (51). The power of this test comes in its optimization and validation, which has shown it to be a more significant predictor of cancer aggressiveness (high grade or pT3 disease) vs standard clinical predictors found in current prostate cancer nomograms, and relies on very small quantities of tissue to do this (51-53). Development and gene selection studies directly addressed the issues of tumor heterogeneity and multi-focality as well as tumor under-sampling. The validation studies were performed through multiple institutions and cohorts of racially diverse men with varying degrees of low to intermediate risk prostate cancer, with both prostate biopsies and RP specimens used in design and validation of the test. This test is ideal for men newly diagnosed with early stage clinically low risk prostate cancer who, during shared decision making discussions, are attempting to decide between early intervention vs active surveillance (51).
Program Director
E. David Crawford, MD
Professor of Surgery, Urology and Radiation Oncology
E. David Crawford Endowed Chair in Urologic Oncology
University of Colorado, Denver
Aurora, CO

Program Overview
The 26th Annual Perspectives in Urology: Point Counterpoint will bring together leading experts to discuss and debate the latest in diagnosis, treatment, and ongoing research in the field of urology. The conference will contain lectures, debates, case presentations, interactive discussions, and interactive question and answer sessions. The use of cutting-edge audience response technology will allow for more fluid interaction among attendees, between attendees and faculty, and for more efficient exchange of knowledge than traditional education formats.

Target Audience
This activity is designed for and will benefit urologists, urologic oncologists, medical oncologists, radiation oncologists, primary care physicians, and other health care professionals involved in the diagnosis and management of urologic diseases.
discussed “field effect” phenomenon, and may prove useful in further improvements of the Oncotype Dx prostate cancer assay. This may also have implications in men being considered for focal therapy.

ProMark
ProMark uses an immunofluorescent automated proteomics imaging platform on paraffin-embedded prostate biopsy specimens to quantify 8 specific protein biomarkers. Using protein biomarkers, rather than mRNA for example, makes the test more resistant to sampling variability and pathologist discordance. This test can identify low vs high risk disease, is predictive of prostate cancer lethality, and has a tumor detection specificity of 99.9% (55–57). Overall, ProMark provides another tool to determine need for biopsy with reliable risk stratification based on initial biopsy tissues.

Prolaris
Prolaris, available from Myriad Genetic Laboratories, Inc. provides information on 10 year CaP specific mortality utilizing personalized risk assessment through analysis of a patient’s tumor cell growth characteristics (CCP-cell cycle progression score). It is used in a similar set of patients as the OncotypeDx test. By evaluating a 46-gene expression profile of genes specific to cell cycle regulation and progression (31 CCP, 15 housekeeper genes), risk stratification can be obtained for low vs high risk of disease progression. Cell proliferation is known to be the underlying mechanism by which cancer thrives. Prolaris takes advantage of this knowledge, and by using genes associated with cell cycle progression, can predict the aggressiveness of an individual’s specific prostate cancer (58). Low expression of the CCP gene profile is associated with low risk of disease progression, with high expression being associated with higher risk of progression (59). Prolaris can be used on a biopsy sample or on post-prostatectomy specimens (59). In its validation testing, Prolaris was found to be an independent predictor of biochemical recurrence and death in two individual treatment cohorts (TURP vs RP) (59). Previous literature has examined physician decision making pre- vs post-Prolaris testing regarding recommendations for treatment for CaP, and found an overall 65% change in the initial physician recommendation, concordant with the Prolaris results (60). The Prolaris test provides three pieces of clinical information for use during patient visits: the Prolaris score, the US distribution, and a mortality risk assessment (61). The Prolaris score itself provides a metric of aggressiveness based on the individual’s CCP score and individual tumor biology. The US distribution percentile provides the patient’s relative risk based on the Prolaris score compared to others in the same AUA risk group. Finally, a risk mortality assessment is provided, which combines the patient’s clinical-pathologic information with the Prolaris score and determines a 10 year prostate cancer-specific mortality risk. Given that the Prolaris test can be used on both biopsy tissue as well as RP specimens, it has value in multiple settings. When counseling a patient post-biopsy, it provides information that can help in deciding to pursue definitive treatment vs surveillance. When used post operatively, it can provide valuable risk stratification and help in determining the need for post-surgical interventions (58).

Decipher
The Decipher Prostate cancer classifier test (GenomeDx Biosciences) predicts the probability of metastatic disease following RP, and also provides analysis of the predicted aggressiveness of the tumor (62). Decipher specifically analyzes 22 RNA biomarkers associated with aggressive disease via whole-transcriptome microarray assay from high risk RP specimens. Following expression of these biomarkers, a 5 year post-surgical probability of metastasis is calculated. The initial validation studies of the Decipher methodology have shown utility especially in the post-operative phase of treatment, with an AUC of 0.79 for predicting 5 year post prostatectomy metastasis (62–64). For example, the Decipher methodology lead to a reclassification of 60% of men to lower risk categories post-operatively, with 98.5% of these men metastasis free at 5 years post-

Table 3. Markers to Aid in Determining Disease Aggressiveness

<table>
<thead>
<tr>
<th>Test</th>
<th>Indication</th>
<th>Science</th>
<th>Results</th>
<th>Cost</th>
</tr>
</thead>
</table>
| Oncotype DX® Genomic Health | Biopsy tissue based test to help determine how aggressive cancer is by providing a likelihood of favorable pathology. For patients that are NCCN Very Low, Low & Intermediate Risk. Provides personalized Risk Assessment, aids in the decision for active surveillance or immediate treatment. | 48-gene expression signature includes cell cycle progression genes selected based upon correlation with prostate tumor cell proliferation. | **Prolaris Score** Score gives a personalized % probability of aggressive cancer. Interpretation as stand-alone result and in combination with NCCN risk categories. | $4,180 | OncotypeDX.com
| | | Test requires 4 tissue sections. | Results delivered within an easy-to-interpret, personalized report. | Medicare covered for NCCN Very Low and Low risk disease |
| ProMark™ Metamark Genetics | Biopsy tissue based prognostic assay for patients with biopsy Gleason Scores 3-4 and/or patients who are deciding between active surveillance and treatment. Provides a personalized risk score. | Eight protein signature predicts cancer aggressiveness (4+3 and/or non-organ confined disease). | 22 RNA biomarkers across multiple biological pathways associated with metastatic progression including cell cycle progression, immune system modulation, androgen signaling. Measures each patient tumor's metastatic risk. | $3,400 | MetamarkGenetics.com
| | | Based on the whole transcriptome analysis platform. | Results delivered within an easy-to-interpret, personalized report. | |
| Prolaris® Myriad Genetics | Biopsy tissue based test for patients who are Active Surveillance candidates. Available post-prostatectomy available to determine relative risk of BCR. | Prolaris score Biopsy is < or > than AUA risk group and estimates 10 year mortality risk. Post-surgical results are similar but provide 10 year risk for BCR. | | $3,400 | Prolaris.com
| | | Post-surgical results are similar but provide 10 year risk for BCR. | Results delivered within an easy-to-interpret, personalized report. | |
| Decipher® GenomeDx Biosciences | Tissue based test for patients with adverse prostatectomy post-surgery (radical prostatectomy). Provides metastatic risk stratification that can help guide post-operative treatment decisions. | Prolaris score Prolaris score is associated with low risk of disease progression, with high risk being associated with higher risk of progression (59). Prolaris can be used on a biopsy sample or on post-prostatectomy specimens (59). | Decipher provides probability of metastasis at 5 years after surgery, and 3 years after detectable PSA. Decipher high risk men may benefit from adjuvant radiation. | $3,400 | GenomeDx.com
| | | Based on the whole transcriptome analysis platform. | Decipher low risk men can be safely observed with PSA monitoring. | |

grandroundsinurology.com
operatively (62). Moreover, physicians’ recommendation for post-operative radiation therapy decreased by 50% after receiving Decipher results showing reclassification to lower risk (63,64). In patients determined to be high risk based on Decipher results, studies have shown an 80% reduction metastasis risk in those who received adjuvant radiation vs salvage radiation (65,66). Another important analysis can be performed on those with biochemical recurrence following prostatectomy. They benefit from Decipher testing, as Decipher metastasis risk stratification can help determine need for salvage radiation vs more intense post-operative intervention including hormonal or other therapies (45). Recently, the test was expanded to be able to additionally utilize prostate biopsy samples for analysis. In a small study of 57 men status-post radical prostatectomy, their preoperative needle biopsy specimens were reviewed. At a median follow up of eight years, eight patients had metastasized and three died of prostate cancer. Decipher was found, through multivariable analysis, to be a significant predictor of metastasis when controlling for standard preoperative clinical findings using the preoperative biopsy tissue. In this way, Decipher can be used clinically in determining preoperatively the likelihood for multi-modality therapy, as well as to set patient expectations early (65). Importantly, Karnes and colleagues suggest that in using a “genomic classifier” such as Decipher, men traditionally labeled as “intermediate risk” may be actually identified as high risk for metastasis. In the same vein, those with pathologic high risk disease may actually be at lower risk of metastasis, thus changing the paradigm and again resetting expectations (62).

NOVEL MARKERS

AR-V7

AR-V7 is a marker found in circulating tumor cells (“CTCs”—used to monitor therapeutic response in CaP patients), and has recently become commercially available through Johns Hopkins’ Molecular Diagnostics Lab. Notably, Epic biosciences has received FDA approval for their AR-V7 test, and has partnered with Genomic Health to commercially launch their test in 2017. AR-V7 itself is a splice variant of the androgen receptor, and can be found in approximately 30% of men with CRPC. AR-V7 positivity is suspected in men treated with long term hormonal therapies for their prostate cancer. Previous reports correlate the presence of AR-V7 in CTCs that may predict resistance to enzalutamide and abiraterone (45). Specifically, having a negative AR-V7 was associated with a better PSA response to abiraterone and/or enzalutamide, as well as a better progression-free survival and overall survival when taking abiraterone and/or enzalutamide (67). More recent literature has provided validation for the test. Scher and colleagues found that CTC expression of AR-V7 protein in mCRPC patients, as a treatment-specific biomarker, was associated with superior survival on taxane therapy over ARS-directed therapy in a prospective clinical practice setting (68). Exciting new data has also shown that AR-V7 variants can be targeted with PIP5K1 inhibitors (ISA-2011B) to overcome enzalutamide resistance of CaP cells (69). The ultimate goal of this marker is to aid in the treatment of men with mCRPC in selecting appropriate chemotherapies (i.e., those that target the AR vs those that do not) (45).

HSD3B1

A recently released paper from Hearn et al details the association of a novel genetic marker: HSD3B1 (1245A>C). HSD3B1 (1245A>C) is an allele associated with CRPC, as it encodes an altered enzyme that increases the amount of DHT from extra-gonadal sources. The authors reviewed 443 patients with CaP, and found an association with this allele and resistance to ADT. They postulate that HSD3B1 can prove useful in the future to help determine which CaP patients will do better on ADT vs those that may need an escalation of therapy sooner due to an increased likelihood of ADT failure (70).

CONCLUSIONS

While there are numerous markers available to aid in risk stratification and decision making regarding prostate cancer, selecting the right test for the right patient in the right setting remains challenging. Patient factors as well as cost considerations make selecting the test of choice that much more difficult. A useful “model of organization,” as well as treatment algorithm help in determining which is the appropriate next best step in the work up of CaP patients. All providers who treat CaP patients benefit from a better understanding of these biomarkers. As referenced above, the field of biomarker design is rapidly evolving, and exciting new genomic testing is on the forefront. Future tasks should be aimed at consolidation of markers, to take advantage of individual markers strengths, and increase clinical utility.

REFERENCES

11. Andriole GL, Crawford ED, Grubb RL, Buys SS, Chia D, Church TR, et al. Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results

PSA <1.5 is Predictive of Negative SelectMDx Result

INTRODUCTION
As the prevailing cause of cancer-associated death in men, prostate cancer (PCa) remains an important topic in the field of urology\(^1\). This year, 161,000 men will be diagnosed with PCa and 26,000 are expected to die from this disease. Autopsy studies have confirmed histologically apparent PCa in approximately 42% of men over 50 who died of other causes\(^2\). Consequently, most men die with PCa rather than because of it. Hence, screening patients more efficiently for PCa is also becoming important to minimize over-diagnosis and over-treatment\(^3,4\). However, PSA, which serves as the initial screening tool for PCa, has poor specificity for this disease. Thus, decisions to biopsy patients need to be supplemented by additional biomarker tests.

New studies have identified a PSA of 1.5 as a more appropriate screening cut-off to identify men at risk for PCa\(^5,6\). In addition to utilizing the new PSA cut-off for screening, our institution also uses a relatively new urinary biomarker test called SelectMDx to monitor our patient population on active surveillance (AS) as well as prior to prostate biopsy. The SelectMDx urine test provides the likelihood of detecting PCas and high grade prostate cancer (HG PCa) with Gleason pattern 4 and 5 upon subsequent biopsy\(^7\). The test measures the mRNA levels of the homeobox C6 (HOXC6) and distal-less homeobox 1 (DLX1) biomarkers in urine samples post-DRE. Higher expression levels of HOXC6 and DLX1 are associated with an increased probability for HG PCa.

Our institution provides an IRB approved annual screening for the members of our community during Prostate Cancer Awareness Week (PCAW). Last year, we offered the SelectMDx test as part of the screening protocol during PCAW. We investigated whether SelectMDx could be predictive of PCa and HG PCa in patients using PSA of 1.5 as a screening cut-off. We aimed to determine if any correlation could be found in the degree of positivity and/or negativity of the SelectMDx test after looking at a screening population split between those above and below a PSA of 1.5.

METHODS
Our institution advertised PCAW to the members of our community with mail-out materials. The population that arrived for screening was generally a heavily screened population over many years. Specifically, the majority of this population appears each year for this screening event. During the screening event, we collected serum samples and post-DRE, first-void urine specimens from each participant. A large, de-identified database of results with PSA, testosterone, cholesterol, SelectMDx, and DRE results were stored and surveyed after labs were completed. We compared PSA results against SelectMDx test results for probability of PCa and HG PCa at biopsy. Likelihood of diagnosing PCa and HG PCa at biopsy is reported as a probability (p) between 0-100%.

RESULTS
We received 199 participants and successfully collected post-DRE first-void urine samples from all but 13 during our PCAW screening event. Average age of the 186 patients was 66 and average PSA was 2.17. There were 81 patients with a PSA <1.5, and none of these men were predicted to...
have PCa by SelectMDx (Figure 1). There were no positive SelectMDx tests in this cohort. In the other cohort, there were 109 patients with a PSA >1.5, and seven of these patients received a positive SelectMDx test result. The average risk of these seven patients predicted by SelectMDx was 43% for PCa and 17% for HG PCa.

CONCLUSION
The SelectMDx test reinforced the original data that a PSA <1.5 is a more appropriate screening cut-off that represents a low-risk subset of patients. In our cohort of patients, no one with a PSA <1.5 had a positive SelectMDx test result. The only positive SelectMDx test results were produced from the cohort of screening patients with a PSA >1.5. Additionally, our data also supports referring patients with a PSA >1.5 to further urologic intervention. Although the SelectMDx test has sufficient sensitivity and NPV to indicate patients with high-grade prostate cancer, the test may also produce false positives3. We plan to follow up with our seven positive SelectMDx patients to determine whether they have taken steps for further urologic intervention and investigate their cancer status with a TRUS or transperineal mapping biopsy. Nonetheless, our data reinforce the proposition of setting a new PSA cut-off at 1.5 and the need to supplement decisions to biopsy with one or more biomarkers.

DISCUSSION

With prostate cancer still the leading cause of cancer mortality in men, it remains a very important topic in men’s health as well as urology3. Additionally, screening patients appropriately for the likelihood of PCa is equally important. New studies have proposed setting a PSA standard of 1.52,3. PSA values above 1.5 are now proposed to be high risk and those less than 1.5 would constitute a low risk group of patients. In an effort to validate and test this new PSA cut-off, we sought to determine how it would fair when supplemented with the SelectMDx test, which is a post-void DRE urinary biomarker that determines a patient’s risk of having PCa as well as HG PCa. During our institution’s annual screening event during PCAW, we hosted almost 200 patients and received final lab results on just over 180 patients. After analyzing each patient’s SelectMDx test and DRE results, we divided the patient population to those above and below a PSA of 1.5. Approximately 44% of our screening population had a PSA <1.5, and, interestingly, none of these patients received a positive SelectMDx result. The only positive results were produced in the screening population with a PSA >1.5. These results tend to affirm that patients with a PSA <1.5 are a low risk population and >1.5 is a higher risk of having PCa. However, the only way to confirm and diagnose PCa is with a biopsy. We might propose a future study in which we follow-up with these patients who received a positive SelectMDx result. As these patients are in a high-risk subset with a PSA >1.5 and they have a positive SelectMDx test result, we believe it will be beneficial for these patients to follow-up with a urologist for further intervention. As the SelectMDx test is not 100% accurate, the only way to determine the PCa status of these patients is with a highly sensitive and specific prostate biopsy, such as a transperineal mapping biopsy8.

REFERENCES

Now there’s greater clarity in identifying men at high risk for aggressive prostate cancer

For more information, go to 4Kscore.com
Multimedia Presentations by GRU:

Grand Rounds in Urology™ conferences like the 2017 Scottsdale Prostate Cancer Symposium, the 27th International Prostate Cancer Update, the 25th Perspectives in Urology: Point-Counterpoint and more are now available on our website.

More than 150+ expert multimedia presentations online:
- Synchronized audio and slide presentations
- Full transcripts
- Complete references linked to PubMed
- Downloadable PDFs

To access these multimedia presentations, you can go to: www.bit.ly/GRUhome