Beyond Ultrasound and MRI: Imaging Prostate Cancer

Leonard G. Gomella, MD Chairman, Department of Urology Director Sidney Kimmel Cancer Network Sidney Kimmel Cancer Center Thomas Jefferson University Hospital

Imaging Modalities Used for the Evaluation of Prostate Cancer

- Plain X-Ray
- Ultrasound
- CT scan
- ⁹⁹Tc Bone scan
- MRI
- PET: scans exploit various aspects of cancer metabolism

Prostate	Cance	r Chara	cteristic
To	Capital	ize Upo	n

Low water content

Restricted water diffusion

Increased vascularity

Increased glucose metabolism

Increased cellular proliferation, cell membrane synthesis

Amino-acid transport

PSMA expression

AR expression

Proclivity for bone metastases

Clinical Imaging Modality

T2 weighted MRI

Diffusion weighted images MRI

Dynamic contrast enhanced MRI Doppler US Contrast enhanced Ultrasound

FDG PET

Choline, Acetate PET

Fluciclovine-PET PSMA PET

FDHT PET

NaF PET, Tc99 bone scan

Selected PET Imaging Methods in PC

Technique	Description
¹¹¹ In ProstaScint	Radiolabeled murine monoclonal antibody against intracellular epitope of PSMA
¹⁸ F-FDG	Positron-emitting radiopharmaceutical transported by glucose proteins
¹⁸ F-NaF	Chemisorption occurs with exchange of 18F-ion for OH-ion to form fluoroapatite, which migrates into crystal matrix of bone for recognition via PET scan
¹¹ C-Na acetate	Uses carbon and acetate to recognize fatty acid synthase upregulated in PC
¹¹ C-Choline	Recognizes choline kinase overexpressed from cell proliferation in PC
¹⁸ F Fluciclovine	AA based detects upregulated amino acid transport in tumors (Axumin)
^{99m} Tc MIP-1404 ⁶⁸ Ga-HBED-CC <u>PSMA</u>	Radiolabeled to target PSMA extracellular domain
¹⁸ F CTT1057 PSMA inhibitor	Irreversible binding affinity to PSMA and robust internalization (ASCO 2017)
⁶⁴ Cu-TP3805	Targets VPAC-1 receptor

Tracer	Radionuclide	Synthesis	Mechanism / Target	Number of not yet recruiting, recruiting, active, invited, or completed clinical trials using the tracer for PCa on clinicaltrials.gov (as of 07/17)	
PSMA					
DCFPyL	18F	Cyclotron	PSMA	17	
HBED-CC-PSMA (PSMA-11)	68Ga	Generator	PSMA	15	
J591	89Zr	Cyclotron	PSMA (ImmunoPET)	4	
IAB2M	89Zr	Cyclotron	PSMA (immunoPET)	2	
P16-093	68Ga	Generator	PSMA	1	
Lipid metabolism					
Choline, Fluorocholine, Ethylcholine,					
Fluoroethylcholine	18F/11C	Cyclotron	Membrane turnover	35	
Acetate	11C	Cyclotron	Lipid synthesis	9	
Nutrient Transport					
FDG	18F	Cyclotron	Glucose transport	25	
Fluciclovine (FACBC, axumin)	18F	Cyclotron	Amino Acid Transport	13	
MeAIB	11C	Cyclotron	Amino Acid Transport	1	
Methionine	11C	Cyclotron	Amino Acid Transport	1	
Sarcosine	11C	Cyclotron	Amino Acid Transport	1	
GRPR Targeting					
RM2	68Ga	Generator	Gastrin Releasing Peptide Receptor (GRPR) antagonist	4	
MJ9	68Ga	Generator	Gastrin Releasing Peptide Receptor (GRPR) antagonist	1	
RM26	68Ga	Generator	Gastrin Releasing Peptide Receptor (GRPR) antagonist	1	
MATBBN	18F	Cyclotron	Gastrin Releasing Peptide Receptor (GRPR) antagonist	1	
BBN-RGD	68Ga	Generator	Gastrin Releasing Peptide Receptor (GRPR) and avB3 integrin	1	
<u>Hypoxia</u>					
FMISO	18F	Cyclotron	Нурохіа	1	
HX4	18F	Cyclotron	Нурохіа	1	
FAZA	18F	Cyclotron	Нурохіа	1	
Bone Targeting					
NaF	18F	Cyclotron	Osteoblast activity	14	
P15-041	68Ga	Generator	Bone	1	
DNA Conthests					
DNA Synthesis	105	Cului	Data di ci		
FMAU FLT	18F 18F	Cyclotron	DNA synthesis	3 4	
FLI	191	Cyclotron	DNA synthesis	4	
Missollanaaus					
Miscellaneous	105	Ouleters	Androgen Deserter		
FDHT, FMDHT	18F	Cyclotron	Androgen Receptor	4	
AE105	68Ga/64Cu	Generator/Cyclotron	Urokinase Plasminogen Activator Receptor (uPAR)	3	
TP3805	64Cu	Cyclotron	VPAC1	2	
Gallium citrate	68Ga	Generator	Multiple mechanisms	1	
MSTP2109A	89Zr	Cyclotron	STEAP1 (immunoPET)	1 Joseph Inpolito M.D. Ph.D. ver.07/24/2017	

Joseph Ippolito, M.D., Ph.D., ver 07/24/2017

Non-US Novel Imaging Methods in PC

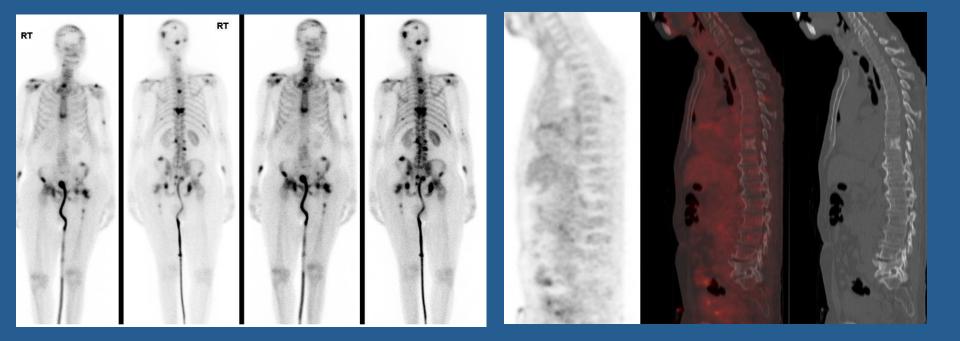
Technique	Description
¹¹¹ In ProstaScint	Radiolabeled murine monoclonal antibody against intracellular epitope of PSMA
¹⁸ F-FDG PET	Positron-emitting radiopharmaceutical transported by glucose proteins
RSI MRI	Detects images based upon the motion of water molecules between tissues
Multiparametric MRI	Combines T2-weighted MRI plus dynamic contrast-enhanced MRI plus magnetic resonance spectroscopy
MRI SPIO	IV lymphotropic ultrasmall SPIO particles to differentiate benign/malignant nodes
¹⁸ F-NaF	Chemisorption occurs with exchange of 18F-ion for OH-ion to form fluoroapatite, which then migrates into crystal matrix of bone for recognition via PET scan
¹¹ C-Na acetate PET	Uses carbon and acetate to recognize fatty acid synthase upregulated in PC
¹¹ C-Choline PET	Recognizes choline kinase overexpressed from cell proliferation in PC
AA based PET (fluciclovine)	Detects upregulated amino acid transport in tumors (Axumin)
^{99m} Tc MIP-1404 Ga-68 labeled HBED- CC PSMA PET	Radiolabeled to target PSMA extracellular domain; urea based
<u>18F CTT1057 PSMA</u> inhibitor	irreversible binding affinity to PSMA and robust internalization (ASCO 2017)

PET Scan Principle

Prostate cancer avid molecule (acetate, choline, fluciclovine, fluoride, PSMA analogue) Positron emitting tracer (¹¹C, ¹⁸F, ⁶⁸Ga)

> Fuse with CT or MR Anatomyl

PET Scan Molecules Applicable in Prostate Cancer

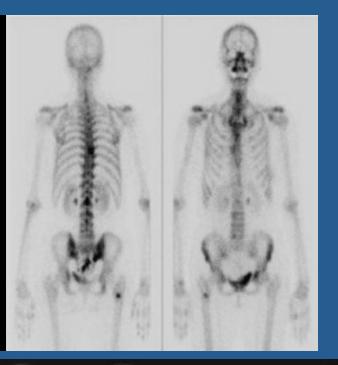

- FDG (Fludeoxyglucose)- FDA approved in cancer (F-18 general PET)
- Sodium Fluoride (NaF) FDA approved
- Choline: C-11 PET FDA approved
- Fluciclovine/FACBC (Axumin)- FDA approved
- Acetate not FDA approved
- PSMA Ligand PSMA-HBED-CC not FDA approved
- DHT/AR not FDA approved

PET- SCAN RADIO TRACERS

¹¹Carbon vs ¹⁸Fluorine vs ⁶⁸Gallium

	¹¹ C	18 F	⁶⁸ Ga
Half-life	20 min	110 min	68 min
Excretion	Hepatobiliary	Urinary	Urinary
Decay Energy	> 99% Positrons	97 % Positrons	>95% Positrons
Source	Cyclotron	Cyclotron	Generator

¹⁸F-FDG PET (fluorodeoxyglucose-"Every day PET") Limited utility; relatively low glucose metabolism of most hormone sensitive prostate cancers. Performs better in CRPC

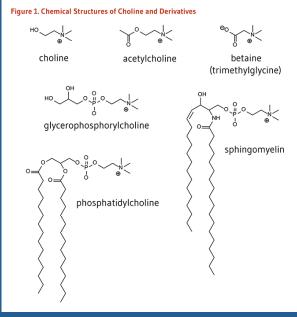

⁹⁹Tc Bone scan

¹⁸F FDG PET

Sodium Fluoride (18F-NaF PET/CT)

- Fluoride tracer uptake is a biomarker for bone metabolism.
- ¹⁸F-NaF has been evaluated in men with biochemical relapse of PC after prior local therapy.
- The positive detection rate by ¹⁸F-NaF of bone metastases not seen on CT and BS was 16.2%
- Drawback is low specificity with false positives

Jadvar et al. Clin Nucl Med. 2012 Jul;37(7):637-43.


Tc-99 bone scan

F-18 NaF scan in the same patient

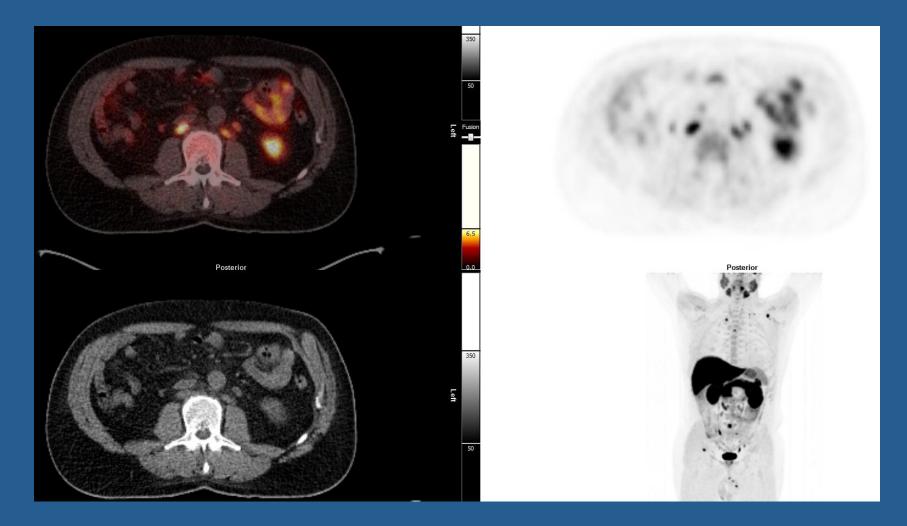
Choline and Acetate Tracers

- Choline kinase is over expressed in prostate cancer cells
- Choline is used to synthesize phosphatidylcholine – integral component of cell membranes
- Acetate also membrane associated

¹¹C-choline PET/CT (Carbon 11)

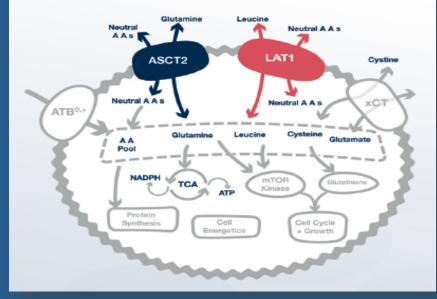
Detection rate for recurrent PC*:

- PSA <1 36%
- PSA 1-2 43%
- PSA 2-3 62%
- PSA >3 73%


Limitations:

- Performance at clinically relevant PSA levels for salvage RT is modest
- Appears slightly inferior in detection of bone mets than MRI
- <u>Very limited access because of 20 min half-life of C¹¹</u>

*Krause et al. The detection rate of [¹¹C]Choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2008 Jan;35(1):18-23.


¹¹C-choline PET/CT

Detection of Retroperitoneal LN in a Patient with PSA Recurrent PC

¹⁸ F Fluciclovine (FACBC) (Axumin)

- ¹⁸F-Fluciclovine is an artificial amino acid PET imaging agent labelled with ¹⁸F.
- Recognized and taken up by amino acid transporters¹ that are upregulated in many cancer cells, including prostate cancer.

¹ Fuchs and Bode. Semin Cancer Biol. 2005;15(4):254.

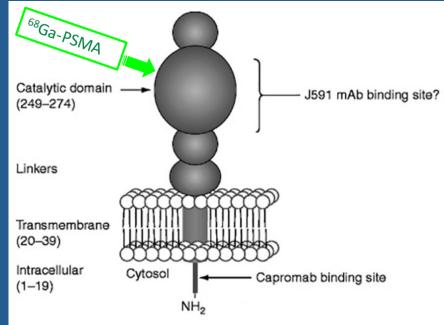
Fluciclovine (Axumin)Case Study


- Post-radical prostatectomy, negative lymphadenectomy
- Rising PSA to 0.73 ng/mL
- Negative MR for malignancy
- Negative skeletal screening
- Imaging result:

- left pre-sacral node

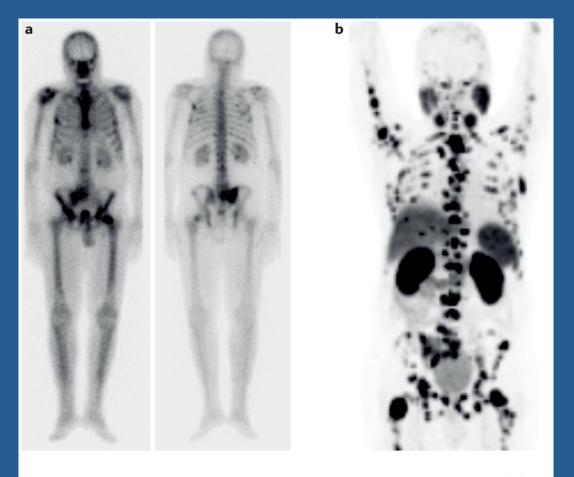
Axial

Coronal


Sagittal

Images courtesy of Blue Earth Diagnostics, Ltd

Prostate Specific Membrane Antigen (PSMA)


- Transmembraine glycoprotein overexpressed on prostate cancer cells
 - This is **not** In-111 capromab pendetide (ProstaScint) which is specific for an epitope on the intracellular domain of PSMA and only accessible after membrane disruption in dead/dying cells
- High levels of PSMA expression correlate with:
 - Early biochemical recurrence
 - Tumor stage
 - Gleason grade
 - Postoperative PSA

⁶⁸Ga-PSMA-PET PSMA Ligand - NH-CO-NH-Lys(Ahx)-HBED-CC

- Extacellular PSMA (Prostasinct intracellular)
- Detection rate for recurrent PC* :
 - PSA <0.5 58% PSA 0.5-1 73%
 - PSA 1-2 93% PSA >2 97%
- Superior to choline scans
- Limitations: not globally available, in the US available only on clinical trials (UCSF, Houston)

⁶⁸Ga-PSMA-PET vs ⁹⁹Tc Bone Scan Prostate Cancer Bone Metastases

Next developmentLutetium-177 PSMA Therapy

- Peptide Receptor Radionuclide
 - Therapy (PRRT)
- "Theranostic"

VPAC in GU Malignancy: **Applications for PET Imaging**

- VPAC receptors bind Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylate Cyclase Activating Peptide (PACAP)
- VPAC-1 receptors
 - exist on normal cells
 - 100% of prostate and bladder cancer overexpress VPAC1
 - high (10⁴/cell) receptor density on PCa cells
- Many tumors types overexpress VPAC-1
- Overexpression of VPAC-1 receptor an early event before histologic changes
- Activates various growth factors

Curr Pharm Des. 2007;13(11):1099-104

Cancer Center at Thomas Jefferson University NCI-designated

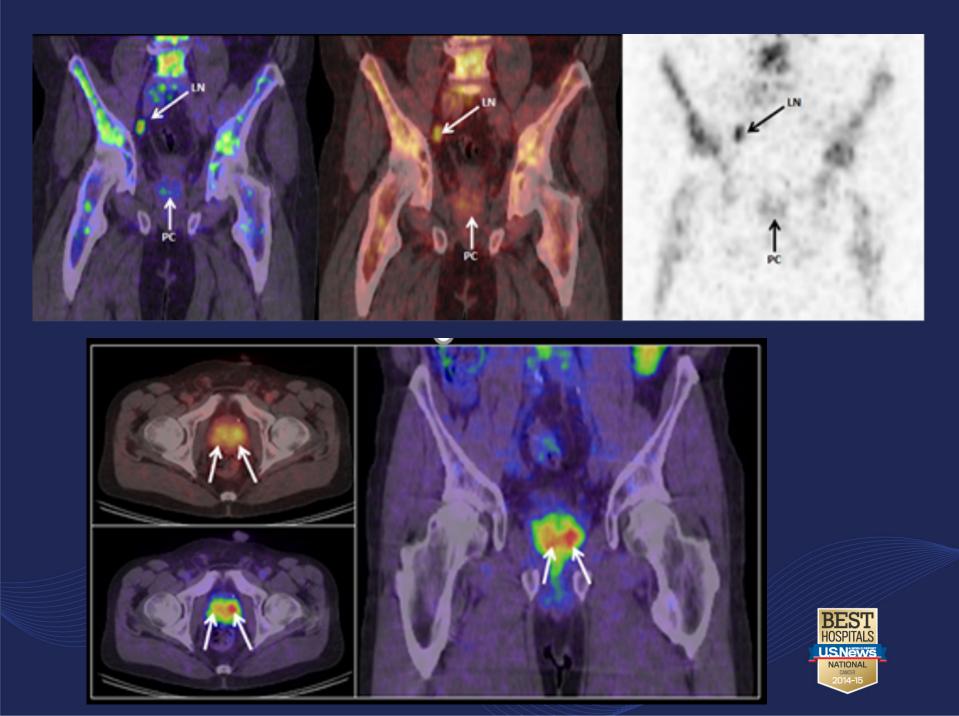
Cu-64 TP3805 VPAC receptor ligand analog

TP3805: peptide analog of VPAC receptor ligand

- Can be conjugated to variety of radioisotopes
- Possibly theranostic (with cytotoxic conjugates)
- Cu-64 is an emerging isotope in PET imaging
 - Positron emitter with relatively long half life (12.8 h)
 - Improved resolution than 99Tc spect scanning
- Can be shipped across country (do not need local) generator)
- Comparatively low radiation dose to patient

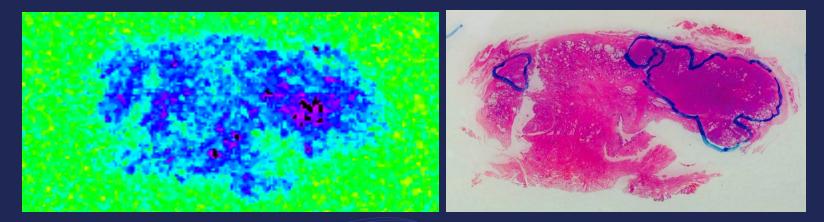
ancer Center **Thomas Jefferson University** NCI-designated

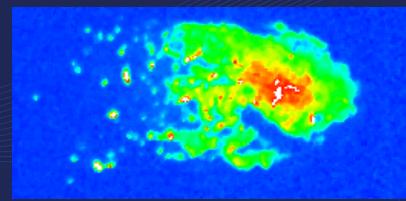
VPAC1 Targeted ⁶⁴Cu-TP3805 Positron Emission Tomography Imaging of Prostate Cancer: Preliminary Evaluation in Man


Sushil Tripathi, Edouard J. Trabulsi, Leonard Gomella, Sung Kim, Peter McCue, Charles Intenzo, Ruth Birbe, Ashish Gandhe, Pardeep Kumar, and Mathew Thakur

UROLOGY 88: 111–118, 2016.

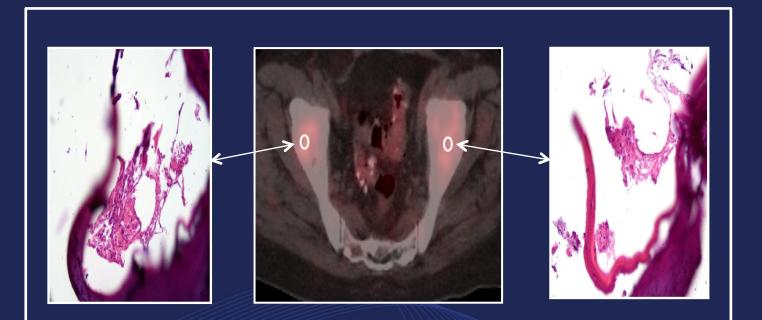
- 25 men going for RALP were imaged preoperatively
- PET/CT images compared with whole mount prostatectomy specimens
- Digital autoradiography performed on whole mount sections




Autoradiography and optical imaging of prostate cancer tissue

Digital Autoradiography (DAR)

Histology prostate cancer tissue


Optical image prostate cancer tissue

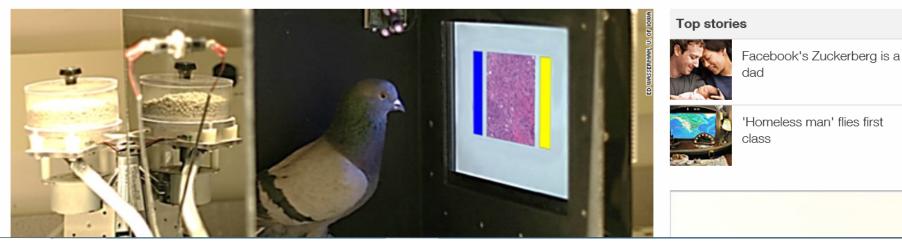
Metastatic Prostate Cancer VPAC Imaging

70 year old male after Cu-64-TP3805 PET imaging. Images showed multiple bone lesions secondary to his PCa. Histological examination of the bone biopsy confirmed metastatic prostate cancer.

BEST HOSPITALS USNEWS NATIONAL 2014-15

SUMMARY

- New imaging modalities are more sensitive in visualizing PC (primary and recurrent) than CT and bone scan


 Do any of these new scans improve clinical outcomes ?
 Feed debate on early treatment of mCRPC
- FDA approval means the test can be performed reproducibly/safely, no verdict on clinical utility
- Which imaging modality is the most useful at this point ? — Practical point: ¹⁸F-fluciclovine PET/CT (Axumin)
- PSMA-based PET promising but US access is limited.
- Clinical trials assessing outcomes of salvage therapy (efficacy, costs) based on guidance from new imaging techniques are needed

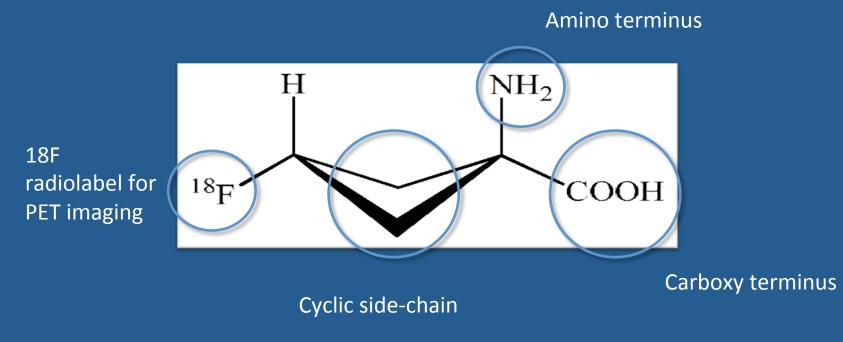
Pigeons, the next great cancer detector?

By Jen Christensen, CNN ③ Updated 10:12 AM ET, Fri November 20, 2015

BACK UP Slides

Fluciclovine F18:

Dosing, administration & image acquisition

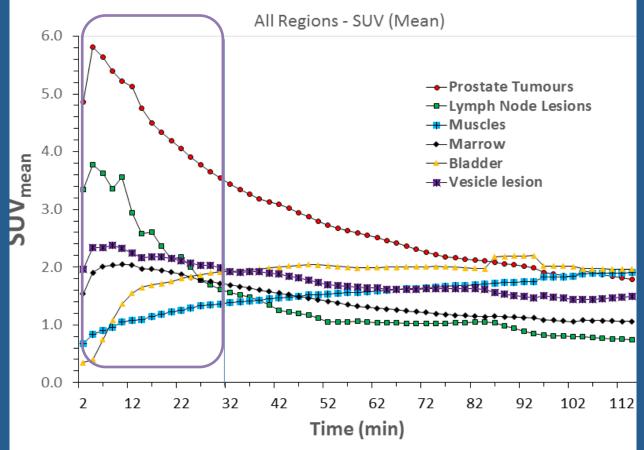

- Recommended dose is 370 MBq (10 mCi) administered as an intravenous (IV) bolus injection, followed by IV saline flush
- Avoid any significant exercise for at least one day prior to PET imaging.
- Fasting for at least 4 hours prior to administration.
- Inject on PET scanner table
- Position the patient supine with arms above the head.
- Begin PET scanning 3 to 5 minutes after completion of injection.
- Start acquisition at mid-thigh and proceed to the base of the skull.
- Typical total scan time is between 20 to 30 minutes.

SUMMARY OF MAIN PET IMAGING TECHNIQUES UTILIZED IN PROSTATE CANCER

Tracer	Half- life	Cyclotron	Mechanism of action	Excretion	Sensitivity*	Specificity*	Advantages	Disadvantages
¹¹ C-choline	20	On-site	Cell membrane synthesis	Hepatic	38-98	50-100	Low urine excretion	Short half-life
¹¹ C-acetate	20	On-site	Lipid synthesis	Hepatic	42-90	64-96	Low urinary excretion	Moderate specificity Not FDA approved
¹⁸ F- Fluciclovine	110	Regional	Amino acid transport	Renal	89-100	67	Availability	Moderate specificity
¹⁸ F-NaF	110	Regional	Adsorption within bone matrix	Hepatic	87-89	80-91	Sensitivity	Only for bones, not specific
⁶⁸ Ga-PSMA	68	Generator (no cyclotrone)	PSMA analog	Renal	63-86	95-100	Not dependent on cyclotrone	Moderately short half-life Not FDA approved
¹⁸ F-FDHT	110	Regional	AR	GI and renal	63	N/A	AR - specific	not effective in castrate sensitive setting, not FDA approved

* Interpret with caution, few studies used biopsy / surgery as gold standard

Fluciclovine Tracer (also known as FACBC)

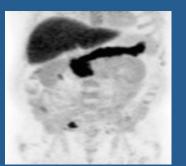


anti1-amino-3-18F-fluorocyclobutane-1-carboxylic acid

Fluciclovine F18: Pharmacodynamics

Imaging: begin with in 3-5 minutes; complete within 20 – 30 minutes.

Fluciclovine F 18 Injection; US Prescribing Information; Blue Earth Diagnostics, Ltd; August 2016 Data on file; Blue Earth Diagnostics, Ltd; May 2016


FDG and Acetate Tracers

- FDG- Analog of glucose; reflects the increased glycolytic activity of tumors (Warburg effect); FDG is trapped in cells via GLUT transport and irreversible HK phosphorylation – poor performance in hormone sensitive prostate cancer
- Acetate- Naturally occurring metabolite; converted to acetyl-CoA and incorporated into cholesterol and fatty acids; fatty acid synthetase and acetyl-CoA carboxylase are oncogenic enzymes upregulated in prostate cancer – not FDA approved

Fluciclovine F18: Bio-distribution

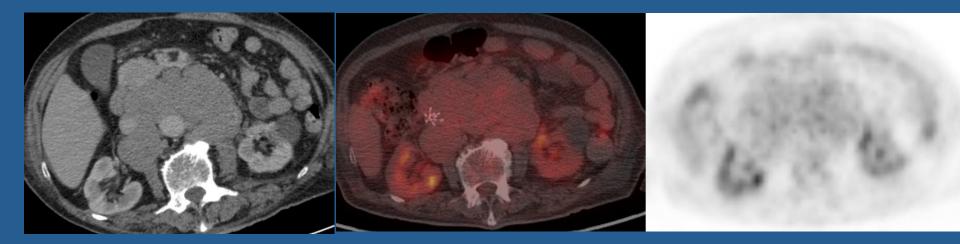
- Amino acid (AA) transporters ubiquitous throughout body; upregulated in prostate cancer²
- Distribution after IV dosing²:
 - Liver: 14%*
 - Red bone marrow: 12%*
 - Lung: 7%*
 - Myocardium: 4%*
 - Pancreas: 3%*
- First 4 hrs. post-injection²:
 - 3% excreted in urine*

*% of administered radioactivity

5-16 min. postinjection¹

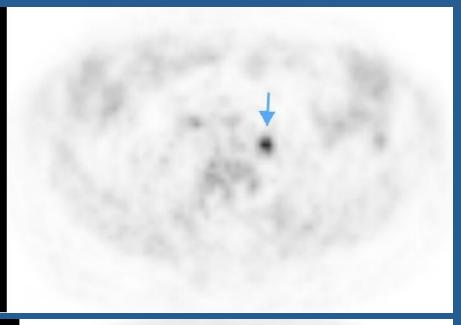
17-28 min. postinjection¹

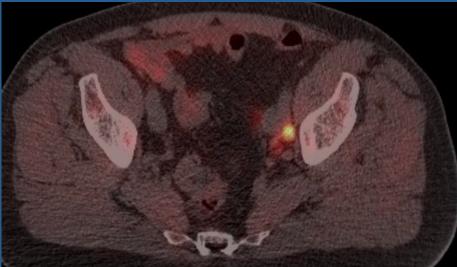
29-40 min. postinjection¹

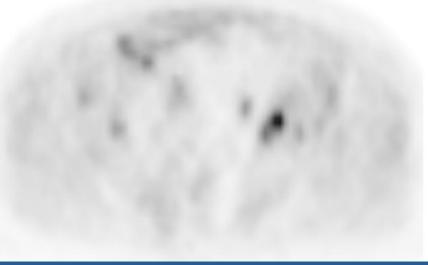


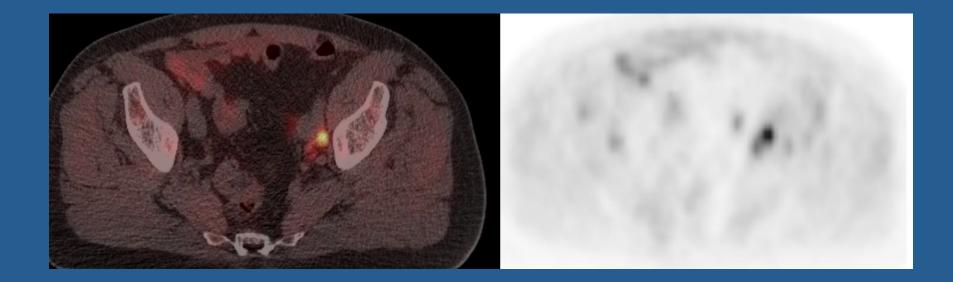
Early (5 mins.) postinjection¹

1. Schuster et al J Nucl Med 2014; 55:1986–1992


2. Fuciclovine F 18 Injection; US Prescribing Information, Blue Earth Diagnostics, Ltd; August 2016


FDG PET PC




77 yr old post RT , PSA recurrence

Skeletal Radiol DOI 10.1007/s00256-014-1903-9

REVIEW ARTICLE

Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis

Guohua Shen $\boldsymbol{\cdot}$ Houfu Deng $\boldsymbol{\cdot}$ Shuang Hu $\boldsymbol{\cdot}$ Zhiyun Jia

Role of ¹⁸F-Choline PET/CT in Biochemically Relapsed Prostate Cancer After Radical Prostatectomy

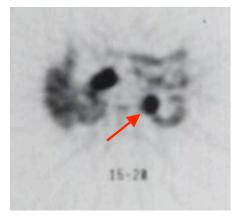
Correlation With Trigger PSA, PSA Velocity, PSA Doubling Time, and Metastatic Distribution

Clinical Nuclear Medicine • Volume 38, Number 1, January 2013 Maria Cristina Marzola, MD,* Sotirios Chondrogiannis, MD,* Alice Ferretti, MD,† Gaia Grassetto, MD,* Lucia Rampin, MD,* Arianna Massaro, CNMT,* Paolo Castellucci, MD,‡ Maria Picchio, MD,§ Adil Al-Nahhas, MD, Patrick M. Colletti, MD,¶ Adriano Marcolongo, MD,# and Domenico Rubello, MD*

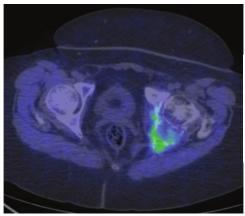
Quantitative Imaging of biologic processes

- PET imaging inherently quantitative
- Metabolic
 - Warburg effect
 - Amino-acid metabolism
- Cell surface characteristics
 - PSMA
 - CA-IX
 - Varying ligands
 - Small molecules
 - Antigen-binding proteins

Other PET tracers


 Tracers that reflect metabolism (Choline, Acetate)

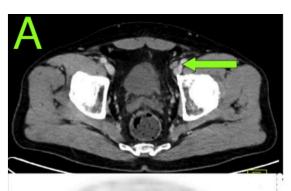
Or

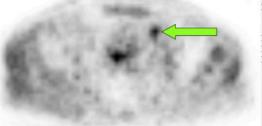

Hypoxia (F-MISO)

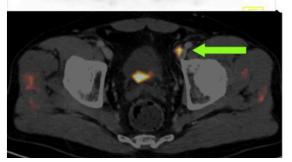
have not been utilized extensively.

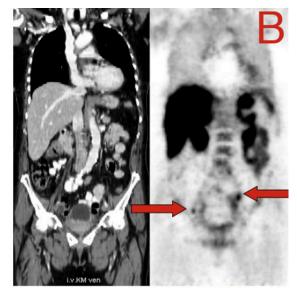
 INCREMENTAL benefit to FDG may be minimal if any.

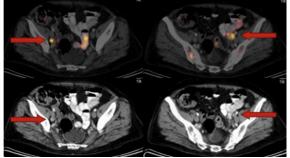
Shreve, J Nucl Med 1995

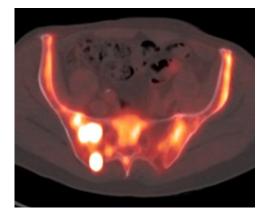



Grassi Am J Nucl Med Mol Imaging 2012.


Utility in staging may not be better than CT alone.

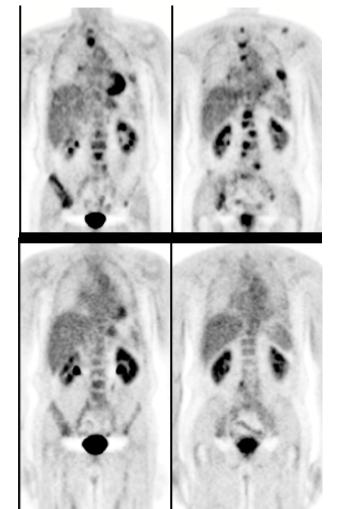

For all tracers excreted through the kidneys.

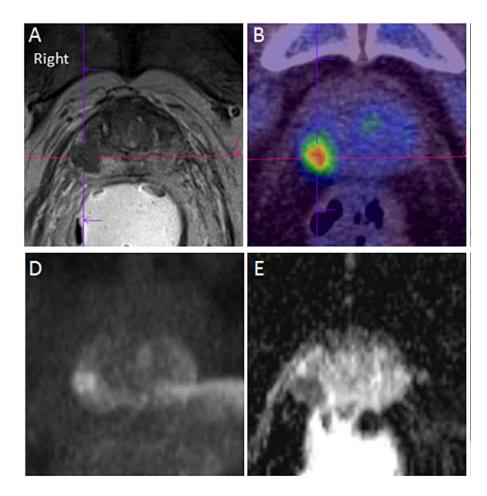

Maurer. Eur Urol 2012.



[11C]Choline

Imaging metastatic CaP

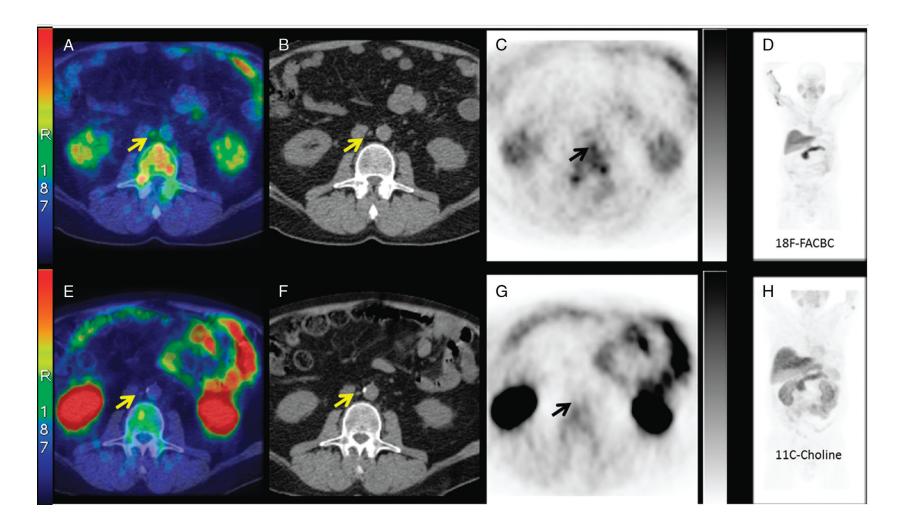

- PCWG2→3... imaging illdefined
- Bone scans remain mainstay
 - NaF PET/CT greater accurac (with ?higher FP)
 - Utility in f/u not clear
 - Flare
 - Non-specific


Prostate cancer PET imaging issues

- Castration-sensitive rarely glucose avid.
- Castration-resistant usually glucose avid.
- Other metabolic agents employed
 - Choline
 - Fluciclovine

Radiocholine

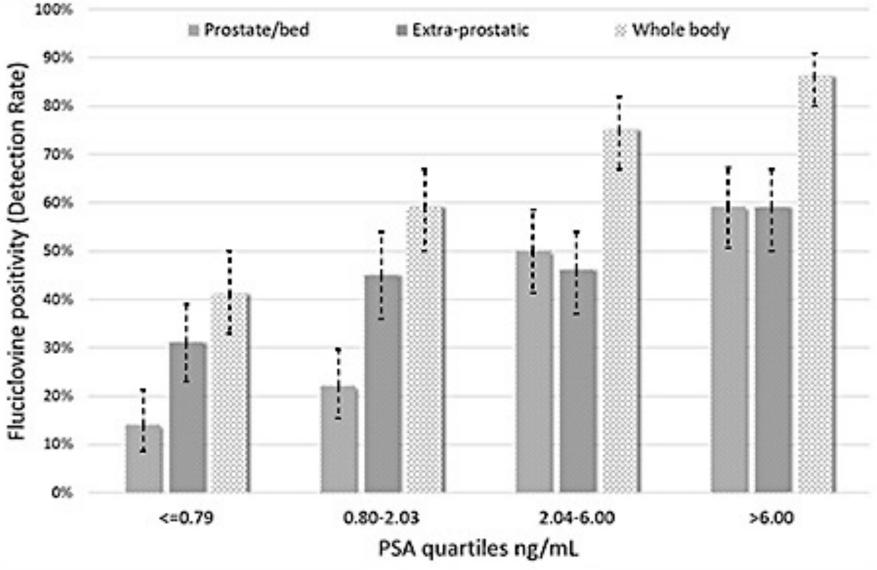
- [11C]-choline has NDA approval
- Increasing utilization in Europe
 - [18F]-choline
- NOT incorporated as biomarker per EAU '13


Hernandez-Argüello, Prostate, 2015

Radiocholine for CRPC

Ceci, Clin Nucl Med 2015

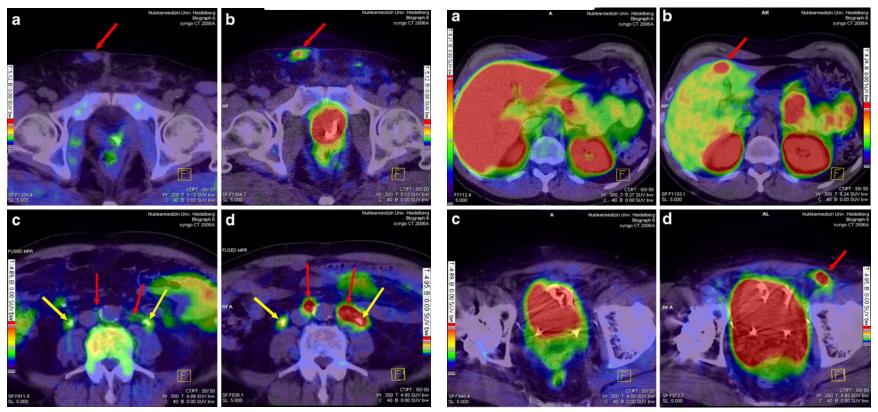
Metabolic tracers



Nanni, Clin Nucl Med2015

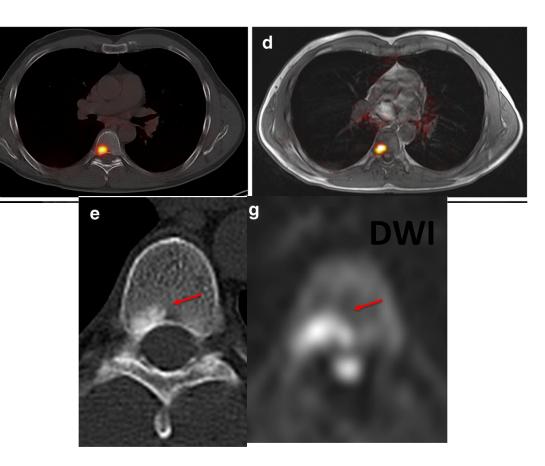
Metabolic tracers

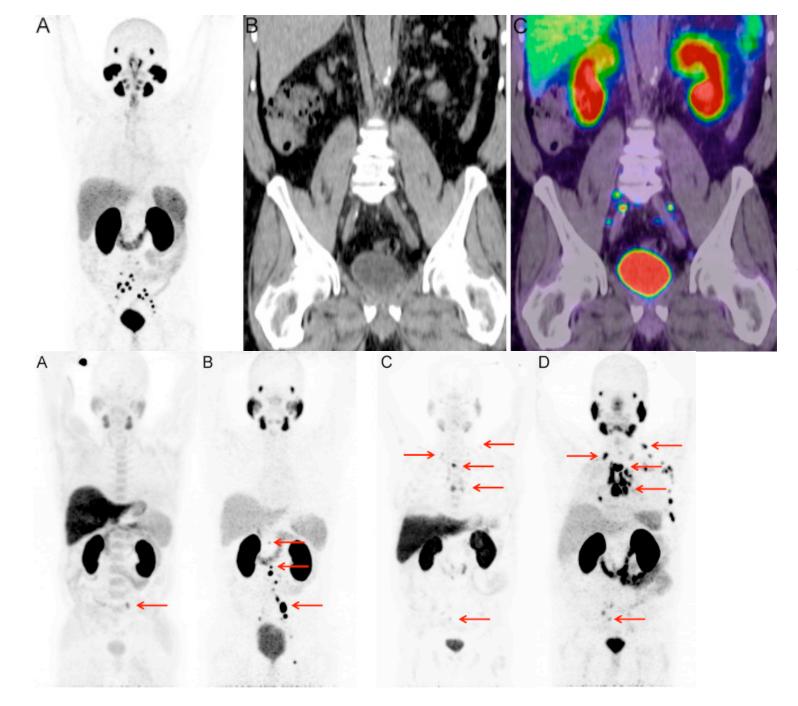
- Both amino acids and choline will likely have comparable biodistribution
- [11C]- half life limits centralized production
 - Addressed by FMC/FEC
- Dextro-amino acids may represent a metabolic paradigm akin to FDG
 - May provide better signal:noise (accumulation)
- Fluciclovine is [18F]-labeled
 - FDA approved


[18F]-Fluciclovine

T. Bach-Gansmo. 10.1016/j.juro.2016.09.117

Phenotype - PSMA


Choline v αPSMA


Afshar-Oromieh, EJNMMI 2014

[68]Ga-αPSMA

- Small molecule with c favorable clearance
- Ga-68 short half-life decreases patient radiation exposure
- Same day imaging
- Extra- and osseous disease

Freitag, EJNMMI 2015

Kratochwil *Semin Nucl Med* 2016

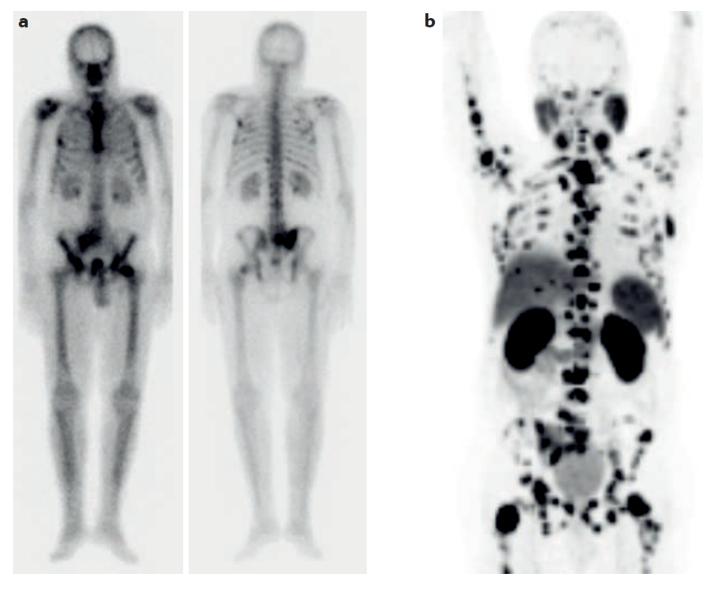
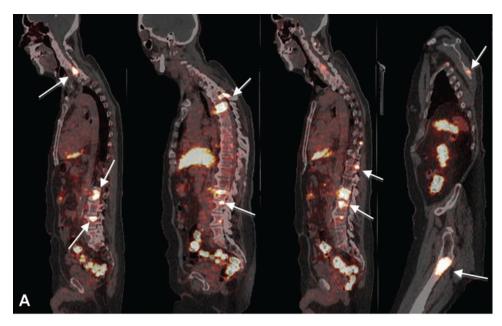
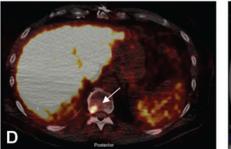


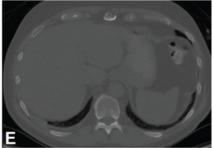
Figure 5 | Imaging of 65-year-old patient with prostate cancer and diffuse

Nature Reviews Urology April 2016

Imaging phenotype – PSMA - IgG


- Prostascint[®] with In-111 FDA-approved, not widely accepted
- HuJ591 against *external* domain of PSMA – greater potential
 - Long half-life
 - Theranostic (?Th-227)


Osborne, Urol Oncol 2013


[89Zr]-DFO-huJ591

- Slow clearance of intact IgG precludes same day imaging
- Current comparisons with sub-optimal imaging modalities (bone scans!!!)
- Theranostic potential

Pandit-Taskar, Clin Cancer Res 2015

PET in CaP

- Metabolic agents:
 - NaF sensitive, non-specific
 - FDG PET/CT may have utility in CRPC
 - [11C]-choline, FDA approved
 - [18F]-choline under development
 - [18F]-fluciclovine, FDA approved
- Phenotype characterization (PSMA_x)
 - Small molecules (PSMA-11)
 - Antibody (J591) and antigen-binding proteins