Prostate Physiology: The Most Diseased Male Organ?

Ryan P. Terlecki, MD FACS
Associate Professor of Urology
Director, Men’s Health Clinic
Director, GURS Fellowship in Reconstructive Urology, Prosthetic Urology, and Infertility
Wake Forest Baptist Health
Disclosure of Financial Relationships

Ryan P Terlecki, MD, FACS

Has disclosed relationships with an entity producing, marketing, re-selling, or distributing health care goods or services consumed by, or used on, patients.

Consultant
AMS/Boston Scientific

Research Grants/Contracts
AMS/Boston Scientific
Allergan
Department of Defense

Honoraria/Advisory Boards
Auxilium
AMS
Objectives (in 20 minutes)

- Provide an overview of relevant prostatic anatomy and physiology

- Discuss the data regarding association between inflammation and BPH/PCa

- Review data regarding the prostate microbiome and potential influence on disease
Audience Response Question 1
Audience Response Question 2
Physical Structure

- First described by Lowsley as having 5 lobes (unlike rat, humans have distinct zones within a uniform gland)
- Organized like a bunch of grapes (like alveoli) in fibrous gelatin
- Cell types
 - Secretory epithelial cells (tall columnar)
 - Basal/stem cells (cuboidal epithelial)
 - Neuroendocrine cells
 - Stromal (SMCs, fibroblasts, endothelial)

Stroma and tissue matrix

- Stroma separated from the cellular components by a basement membrane composed of extracellular matrix
- Important for structural organization, but also has role in development and control of cellular functions
- Appears to have a pivotal role in the prostate inflammatory response

Who needs a prostate anyway?

- Essential for fertility
- Role as trigger for ejaculation, sperm activation, and capacitation
- Prostate epithelial cells are the only healthy human cells that produce energy by glycolysis rather than the Krebs cycle

Prostatic Fluid

- KLKs (esp KLK2 and KLK3=PSA, discovered 1979)
- Citrate
- Zinc: prostate w/ highest levels of any soft tissue
- Spermine: may protect from infection
- Prostaglandins: misnomer; more in SVs
- Cholesterol: stabilize spermatozoa
- Seminin: affects liquefaction; odor source
- Acid Phosphatase: Old urologists (Crawford) used this

Huggins, C. Harvey Lect 1947. 42:148
Zinc

- Accumulated within epithelial cells (4% of body content); possibly supported by prolactin
- Blocks Kreb cycle and causes citrate accumulation (which is the energy substrate for sperm)
- Causes temporary inactivity of KLKs
- Major Zn transporter (Z1P1) decreased or absent in PCa tissue compared to normal or BPH tissue (hypothesized tumor suppressor)

Huggins, C. Harvey Lect 1947. 42:148
Hormonal Control

- 98% of testosterone in blood is bound to protein (mainly albumin and SHBG)
- Only 2% of circulating testosterone is available to enter prostate via diffusion from plasma
- Over 95% of testosterone converted to DHT (flatter, higher binding affinity than T)
- DHT binds AR and complex goes to nucleus
Androgen Metabolism of Prostate

- RNA polymerase activated, mRNA synthesized (transcription)
- Ribosomal translation of mRNA results in production of cytokines (EGF, FGF, PDGF) and secretory proteins (enzymes)
- Cytokines stimulate cell growth via receptors on epithelial and stromal cells
- Proteins are secreted into lumen on neurological command during ejaculation
Androgen Regulation

- AR gene is a master gene in prostate physiology; two forms (A,B) can be transcribed but no evidence of different roles
- Expression essential for epithelial homeostasis (>300 AR mutations in PCa lines)
- With age, T/DHT decrease, gland function is impaired, reducing ability to maintain healthy levels of Zn, citrate, KLK (fertility goes down and weakens ability to inhibit Krebs cycle—favors cancer-prone status)
Androgen Regulation

- Prostate doesn’t grow in prepubertal castrates (eunuch studies)
- Castration causes gland regression in mature males by apoptosis, reversible with androgen replacement (female embryos exposed to androgens will develop prostates)
- Estrogens act in concert with androgens to promote and inhibit growth (alpha, beta)
Innervation

- Adrenergic and noradrenergic generally well known by providers (think about BPH meds)

- Evidence for M1 receptors on epithelium, M2 on stroma, and M1 + M3 in some cancer cell lines

- Data suggests these receptors may modulate PCa growth, with cholinomimetics contributing to proliferation

Ventura et al. Pharmacology & Therapeutics 2002. 94:93-112
Immunoactivity

- Immunocompetent organ (like lung, intestine)
- Populated by lymphocytes, macrophages, and mast cells
- Immune responses in prostate tissue likely influenced by sex hormones, which can affect susceptibility to inflammation
Immunoactivity

- Lymphocytes secrete cytokines
- Cytokines regulate (paracrine and autocrine) stromal and epithelial cell growth
- Think of **clinical associations**
 - Estrogen is pro-inflammatory
 - Obesity associated with higher E2 and higher inflammation (*metabolic syndrome*)
 - Some suggest LUTS improve with reductions in obesity
The Clinical Burden

- #1 nonskin CA, #2 CA killer (after lung)

- Autopsy data shows invasive cancer in 64% of men approaching 70 years of age

- BPH most common urologic disease in older men (25% in 50s, 33% in 60s, nearly 50% in 80s)
PCa and BPH

- Form in different areas of the prostate (generally)

- Considered chronic diseases with slow progression

- Prevalence rises with age, both are hormone dependent, and both have been associated with inflammation
Prostatitis

- Prevalence of 5-13%, >2 million hospital visits per year in US, seen in >78% of men in REDUCE trial

- Acute bacterial, chronic bacterial, inflammatory, noninflammatory, asymptomatic

- Suggested to be causative in pathology of BPH as early as 1937

Moore D. J Urol 1937. 38:173-82
Prostatitis and Cancer

- California Men’s Health Study
 - 68,675 men
 - Prostatitis 1.30 RR for PCa
 - Longer duration, higher risk (p = 0.003)

- Association deemed significant based on meta-analysis of 20 studies

- Daily intake of NSAIDs (primarily ASA) has been associated with a 39-66% risk reduction for PCa

Harris et al. Oncol Rep 2005. 13(4):559-83
Prostate Microbiome

- Analysis now feasible through molecular-based assays

- The prostate is not a sterile environment and bacterial populations may differ between benign and malignant tissue

- Unclear ‘which promotes which’

Infection Causing Cancer?

- Virchow 1863; Also consider example of Helicobacter pylori

- First proposed for PCa in the early 1950s

- Some association between PCa risk and gene variants of COX-2, RNASEL, and TLR4 identified in cases of hereditary PCa

- RP specimen analysis shows over 70% contain *Enterobacteriaceae*
Propionibacterium acnes

- Abundant within prostate tissue, vaginal tissue, and frequently found in urine; population increased by testosterone use

- Proinflammatory role; Has been associated with PCa and been found absent in normal tissue; **Suggested as initiator or promoter**

- Reported in **78-95% of PCa specimens and 100% of PIN lesions**; predictive of CA on subsequent biopsies for elevated PSA

Alexeyev et al. J Clin Microbiol. 2007; 45:3721-3728
Yow et al. Infect Agent Cancer 2017. 12:4
Audience Response Question 1
Audience Response Question 2
Conclusions

- The prostate is an immunocompetent, androgen-dependent organ of fertility, but the direct target for a number of benign and malignant diseases.

- Impairment of the status of the epithelium can decrease accumulation of Zn and citrate, and affect KLK secretion.

- Inflammation associated with both BPH and PCa but data cannot truly confirm causality.