Updates in Immunotherapy for Bladder Cancer

Daniel P. Petrylak, MD Professor of Medicine and Urology Director, GU Translational Working Group Co Director, Signal Transduction Program Smilow Cancer Center, Yale University

Disclosure

- Consultant: Sanofi Aventis, Celgene, Pfizer, Millineum, Dendreon, Johnson and Johnson, Bayer, Medivation, Roche/Genetech, Bellcium, Tyme
- Research Support: Roche, Merck, Dendreon, Progenics, Lilly, Medivation, Agenysis, Astra Zenca, GSK, Bayer
- Stock Tyme, Bellicum

Smilow Cancer Hospital at Yale-New Haven

Checkpoint Inhibitors Approved for Use in Urothelial Carcinoma

7 US FDA Approvals May 2016-May 2017

Setting	Antibody	Approval Status			
First-line (cisplatin- ineligible)	Atezolizumab	Accelerated approval granted in April 2017.			
	Pembrolizumab	Accelerated approval granted in May 2017.			
Platinum- pretreated	Atezolizumab	• Accelerated approval granted in May 2016.			
		 In May 2017, the subsequent phase 3 			
		IMvigor211 trial did not meet primary endpoint of			
		overall survival.			
	Nivolumab	• Accelerated approval granted in February 2017.			
	Durvalumab	Accelerated approval granted in May 2017.			
	Avelumab	Accelerated approval granted in May 2017.			
	Pembrolizumab	Full approval granted in May 2017.			

Approvals: First-line, Cisplatin-Ineligible

Apr 2017

May 2017

Atezolizumab

Pembrolizumab

Above agents are indicated in patients with locally advanced or metastatic urothelial carcinoma not eligible for cisplatin-containing chemotherapy.

Sequence of Therapy for <u>Cisplatin-Ineligible</u> Patients

	Gem-Carbo (Ph III) ¹	Atezolizumab (Ph II) ²	Pembrolizumab (Ph II) ³
Number of patients	119	119	370
% with PS 2	44.5%	20%	42%
% CrCl <60 mL/min	55.5% ^a	70%	49%
% PS 2 + CrCl <60 mL/min	26.9% ^a	7%	9%
ORR	41.2% 🗸	23%	24%
Median PFS	5.8 mo 🛛 🗸	2.7 mo	2 mo; 3 mo on therapy
Median OS	9.3 mo	15.9 mo 🗸	Not reported
Duration of response	Not reported	Not reached (median f/u 17.2 mo)	Not reached (78% ≥6 months)

^aGFR 30-60 mL/min.

1. De Santis M, et al. J Clin Oncol. 2012;30(2):191-199; 2. Balar AV, et al. Lancet. 2017;389(10064):67-76; 3. Balar AV; et al. Lancet Oncol. 2017;18:1483-1492.

Use PD-L1 expression to select therapy for cisplatinineligible patients?

5/18/2018

FDA Alert

•In two ongoing clinical trials (KEYNOTE-361 and IMVIGOR-130), the Data Monitoring Committees' (DMC) found patients in the monotherapy arms of both trials with PD-L1 low status had decreased survival compared to patients who received cisplatin- or carboplatin-based chemotherapy.

•Both trials have stopped enrolling patients whose tumors have PD-L1 low status to the Keytruda or Tecentriq monotherapy arms.

•The monotherapy arms remain open only to patients whose tumors have PD-L1 high status.

Examples of Different Staining Patterns and Antibodies SP-142

Rosenberg et al. ESMO 2016 Abstract

SP263

Massard C, et al. J Clin Oncol. 2016;34(26):3119-2125.

Approvals: Previously-treated Disease

May 2016

Feb 2017

May 2017

Atezolizumab

Nivolumab

Durvalumab Avelumab

nab Pembrolizumab

Above agents are indicated in patients with locally advanced or metastatic urothelial carcinoma who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with (platinum-containing) chemotherapy.

Smilow Cancer Hospital at Yale-New Haven

OS by PD-L1 Status

Smilow Cancer Hospital at Yale-New Haven

Median Survival by Baseline Characteristics

Patterns of AE Occurrence

Time Following Initiation of	All Treatment- Related AEs		Serious Treatment- Related AEs	
Atezolizumab*	All Grade	Grade 3-4	All Grade	Grade 3-4
Within year 1 (N = 95)	66%	7%	5%	0%
Beyond year 1 (n = 37)	35%	5%	0%	0%
Year 2 (n = 37)	32%	5%	0%	0%
Year 3 (n = 20)	10%	0%	0%	0%

 Values in parentheses refer to the number of patients evaluable for safety at the beginning of each period.

- Most treatment-related AEs occurred within the first year following initiation of treatment, with the AE incidence in year 2 approximately half that in year 1
- No serious treatment-related AEs occurred beyond year 1

IMvigor211 Phase III Trial in Previously-treated Urothelial Cancer

Patients with previously treated relapsed UBC (n = 767 [230 PD-L1+]) Vinflunine, paclitaxel, or docetaxel IV q3w until progression

Atezolizumab 1200 mg IV q3w

- Primary endpoint: OS in IHC 2/3→1/2/3→ITT
- Secondary endpoints: PFS, ORR, DOR
- FPI: Q4 2014

2nd Special Conference

EACR AACR SIC

IMvigor211 Study Design

 OS, tested hierarchically in pre-specified populations – Efficacy: RECIST v1.1 ORR, PFS and DOR[◦]

– Safety

- PROs: EORTC QLQ-C30

DOR, duration of response; ECOG, Eastern Cooperative Oncology Group; EORTC, European Organisation for Research and Treatment of Cancer; PRO, patient-reported outcome; q3w, every three weeks; RECIST, Response Evaluation Criteria In Solid Tumors; TCC, transitional cell carcinoma. ^a ClinicalTrials.gov, NCT02302807. ^b Defined by time from prior chemotherapy < 3 mo, ECOG performance status > 0 and hemoglobin < 10 g/dL. ^c Confirmed response was not required for secondary efficacy endpoints. This analysis reports exploratory confirmed responses.

Powles T, et al. EAS 2017, IMvigor211.

OS Analysis: IC2/3 Population

HR, hazard ratio.

OS Analysis: IC1/2/3 Population

Median follow-up duration in ITT population: 17.3 mo (range, 0 to 24.5 mo)

KEYNOTE-045: Phase III Study Design

• Liver metastases (yes vs no)

Time from last chemotherapy dose (<3 vs ≥3 mo)

populations; safety in total population

CPS, combined positive score; PD, progressive disease.

Bajorin et al. ASCO 2017, Abstract 4501.

Future Directions

Combinations Adjuvant therapy Biomarkers

Ongoing First-Line Phase III Trials Incorporating IO for Advanced UC: Including Cisplatin-Eligible and -Ineligible Patients in the Same Trial!

CT ID	Phase	Target	Experimental Arm(s)	Standard Arm
NCT02807636	III	PD-L1	Atezo	Placebo + Gem-Plat
IMvigor130			OR	
			Atezo + Gem-Plat	
NCT02853305	III	PD-1	Pembro	Gem-Plat
KEYNOTE-361			OR	
			Pembro + Gem-Plat	
NCT02516241	III	PD-L1 +/-	Durvalumab	Gem-Plat
DANUBE		CTLA-4	OR	
			Durva + Treme	
NCT03036098 CM-901	Ш	PD-1 + CTLA	Nivo + Ipi*	Gem-Plat

*This trial includes a substudy for cisplatin-eligible patients comparing gemcitabine + cisplatin +/- nivolumab.

Second-Line Switch Maintenance: Avelumab Undergoing Evaluation in Phase III JAVELIN Bladder 100 Trial

NCT02603432

Adjuvant PD-1/PD-L1 Inhibitor Phase III Trials

PI	Population	Control Arm	Experimental Arm	Primary Endpoint
Industry	All-comers MIUC Prior NAC- ≥pT2 No AC ≥pT3	No therapy	Atezolizumab	PFS
Industry	All-comers MIUC Prior NAC- ≥pT2 No AC ≥pT3	Placebo	Nivolumab	PFS
Intergroup ^a	All-comers MIUC Prior NAC- ≥pT2 No AC ≥pT3	No therapy	Pembrolizumab	PFS/OS

^aPI: Apolo; SWOG PI: Sonpavde; ECOG PI: Srinivas.

Neoadjuvant Therapy With IO Agents Selected Phase I-II Trials

	Trial ID	Phase	Regimen	Primary Endpoint
	NCT03294304	Ш	GC-Nivolumab	pCR
Chemo-IO	NCT02690558	П	GC-Pembrolizumab	pCR
	NCT02365766	1/11	G/GC-Pembrolizumab	Feasibility, pCR
ю	NCT02451423	Ш	Atezolizumab	pCR, immune response
	NCT02736266	П	Pembrolizumab	pCR
	NCT02812420	II	Durvalumab + Tremelimumab	Feasibility
10-10	NCT02845323	П	Nivolumab +/- Urelumab	Immune response
	Pending	I	Durvalumab +/- CD73i	Feasibility, Immune response

Biomarkers

- In bladder cancer, PD-L1 staining appears to be associated with higher response rate, and may be linked to overall survival;¹ however, multiple assays exist and are under evaluation in bladder cancer.
- Other biomarkers beyond PD-L1 are needed.
 - Data in multiple cancer types suggests that mutation load is associated with treatment outcome with immune checkpoint blockade.^{2,3}

Biomarkers Beyond PD-L1

- Luminal I tumors have low T_{eff} expression
- Luminal II tumors have high T_{eff} and low stromal gene expression
- Basal tumors have high T_{eff} and high stromal gene expression

Rosenberg JE, et al. Presented at: ASCO 2016; June 3-7, 2016; Chicago, IL. Abstract 104.

Enfortumab Vedotin: Proposed Mechanism of Action

Enfortumab Vedotin is being co-developed by Seattle Genetics, Inc. and Astellas Pharma Inc.

PRESENTED AT: ASCO ANNUAL MEETING '17 #ASCO17 Slides are the property of the author. Permission required for reuse. Presented by: Daniel P. Petrylak

Study Design

- This phase 1, 3-part study (NCT02091999) enrolled patients with metastatic malignant solid tumors treated with ≥1 prior chemotherapy regimen
- IV administration over 30 minutes on Days 1, 8, and 15 every 28 days
- Study enrollment in Parts B and C ongoing

ASCO ANNUAL MEETING '17 | #ASCO17

https://www.clinicaltrials.gov. Accessed 12 May 2017.

Slides are the property of the author. Permission required for reuse.

PRESENTED AT:

Presented by: Daniel P. Petrylak

Screening of Nectin-4 Expression in mUC

- At screening, patients with mUC had samples that were centrally assessed by immunohistochemistry (IHC) for Nectin-4
 - Almost all patient (97%) samples showed Nectin-4 expression
 - Expression of Nectin-4 was high (median H-score 280 out of a 300 maximum score)
- Due to the above findings, prescreening for Nectin-4 is no longer an eligibility requirement for subjects with mUC

ASCO ANNUAL MEETING '17

Slides are the property of the author. Permission required for reuse.

PRESENTED AT:

Gray bars indicate patients with Nectin-4 H-score <150 Blue bars indicate patients with H-scores of \geq 150 Note: data cutoff November 2016, N=186

#ASC017 Presented by: Daniel P. Petrylak

Clinical Response With Enfortumab Vedotin in mUC Patients With or Without Prior CPI or Liver Metastases

	Prior CPI Treatment ^a	CPI-Naïve ^a	Liver Metastases ^a
	1.25 mg/kg (n=89)	1.25 mg/kg (n=23)	1.25 mg/kg (n=33)
Confirmed CR	3.4%	9 %	0
Confirmed PR	37%	35%	39%
Confirmed ORR ^b (95% CI)	40% (30.2, 51.4)	44% (23.2, 65.5)	39% (22.9, 57.9)
SD	34%	17%	21%
DCR ^b (95% CI)	74% (63.8, 82.9)	61% (38.5, 80.3)	60% (42.1, 77.1)

Data cut-off date is April 9, 2018.

Data presented as n (%), unless otherwise indicated.

CR, complete response; CPI, checkpoint inhibitor, DCR, disease control rate (DCR=CR+PR+SD); PR, partial response; ORR, overall response rate (ORR=CR+PR); SD, stable disease.

^aEvaluable patients must have at least one post-baseline assessment; responses assessed per RECIST 1.1.

^bData presented as % (95% CI); 95% CI based on the Clopper-Pearson method.

Jonathan E. Rosenberg

Clinical Response With Enfortumab Vedotin in mUC Patients With or Without Prior CPI or Liver Metastases

	Prior CPI Treatment ^a	CPI-Naïve ^a	Liver Metastases ^a
	1.25 mg/kg (n=89)	1.25 mg/kg (n=23)	1.25 mg/kg (n=33)
Confirmed CR	3.4%	9 %	0
Confirmed PR	37%	35%	39%
Confirmed ORR ^b (95% CI)	40% (30.2, 51.4)	44% (23.2, 65.5)	39% (22.9, 57.9)
SD	34%	17%	21%
DCR ^b (95% CI)	74% (63.8, 82.9)	61% (38.5, 80.3)	60% (42.1, 77.1)

Data cut-off date is April 9, 2018.

Data presented as n (%), unless otherwise indicated.

CR, complete response; CPI, checkpoint inhibitor, DCR, disease control rate (DCR=CR+PR+SD); PR, partial response; ORR, overall response rate (ORR=CR+PR); SD, stable disease.

^aEvaluable patients must have at least one post-baseline assessment; responses assessed per RECIST 1.1.

^bData presented as % (95% CI); 95% CI based on the Clopper-Pearson method.

Jonathan E. Rosenberg

Clinical Response With Enfortumab Vedotin in mUC Patients With or Without Prior CPI or Liver Metastases

	Prior CPI Treatment ^a	CPI-Naïve ^a	Liver Metastases ^a
	1.25 mg/kg (n=89)	1.25 mg/kg (n=23)	1.25 mg/kg (n=33)
Confirmed CR	3.4%	9 %	0
Confirmed PR	37%	35%	39%
Confirmed ORR ^b (95% CI)	40% (30.2, 51.4)	44% (23.2, 65.5)	39% (22.9, 57.9)
SD	34%	17%	21%
DCR ^b (95% CI)	74% (63.8, 82.9)	61% (38.5, 80.3)	60% (42.1, 77.1)

Data cut-off date is April 9, 2018.

Data presented as n (%), unless otherwise indicated.

CR, complete response; CPI, checkpoint inhibitor, DCR, disease control rate (DCR=CR+PR+SD); PR, partial response; ORR, overall response rate (ORR=CR+PR); SD, stable disease.

^aEvaluable patients must have at least one post-baseline assessment; responses assessed per RECIST 1.1.

^bData presented as % (95% CI); 95% CI based on the Clopper-Pearson method.

Jonathan E. Rosenberg

Progression-Free Survival in Patients With mUC Treated With Enfortumab Vedotin 1.25 mg/kg

Jonathan E. Rosenberg

#ASCO18 Slides are the property of the author, permission required for reuse.

Preliminary Overall Survival in Patients With mUC Treated With Enfortumab Vedotin 1.25 mg/kg

Jonathan E. Rosenberg

#ASCO18 Slides are the property of the author, permission required for reuse.

Conclusions

- Checkpoint inhibition therapy demonstrates significant antitumor activity in advanced urothelial carcinoma:
 - As initial therapy in cisplatin-ineligible patients.
 - In patients with cisplatin-pretreated disease.
- Trials are ongoing to explore immunotherapy-based combinations and the use of immunotherapy in earlier stages of disease.
- A thorough understanding of the markers of resistance and response will help to designing future trials in earlier disease.

