Genomic Markers and DNA Sequencing Testing

Future Directions in Urology Symposium August 12, 2018

Daniel W. Lin, MD Professor and Chief of Urologic Oncology Pritt Family Endowed Chair in Prostate Cancer Research University of Washington, Department of Urology Fred Hutchinson Cancer Research Center, Division of Public Health Sciences

The Challenge

Español

			1-800-4-CANCER	Live Chat	Publications	Dictionary
ABOUT CANCER CANCER TYPES	RESEARCH	GRANTS & TRAINING	NEWS & EVENTS	ABOUT NCI	search	Q

Home > News & Events > Press Releases > 2018

🗚 🖶 🖾 f 🎔 G+ 🦻

PRESS RELEASES

NCI Press Release

TAILORx trial finds most women with early breast cancer do not benefit from chemotherapy

Posted: June 3, 2018

Contact: NCI Press Office 240-760-6600

New findings from the groundbreaking Trial Assigning Individualized Options for Treatment (Rx), or TAILORx trial, show no benefit from chemotherapy for 70 percent of women with the most common type of breast cancer. The study found that for women with hormone receptor (HR)-positive, HER2-negative, axillary lymph

Important Biomarker Questions

- What is data to support the biomarker?
 - Biologic rationale, feasibility
 - Appropriate application and validation
- Does it add to established models that are based on readily available clinical and pathologic data?
- What is clinical impact of improved prediction?
 - Will it change pre-/post-therapy decision-making? (utility)
 - Impact on choice of therapy?
 - Impact on disease-specific outcomes? (OS, PFS, etc)

Disease State Biomarkers (partial list)

grandroundsinurology.com

Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker–Based Risk Score

Leander Van Neste^{a,1}, Rianne J. Hendriks^{b,1}, Siebren Dijkstra^{b,1}, Geert Trooskens^c, Erik B. Cornel^d, Sander A. Jannink^c, Hans de Jong^c, Daphne Hessels^c, Frank P. Smit^c, Willem J.G. Melchers^e, Gisèle H.J.M. Leyten^{b,f}, Theo M. de Reijke^f, Henk Vergunst^g, Paul Kil^h, Ben C. Knipscheerⁱ, Christina A. Hulsbergen-van de Kaa^j, Peter F.A. Mulders^b, Inge M. van Oort^b, Wim Van Criekinge^k, Jack A. Schalken^{b,*}

- Two independent, prospective trials, <u>n=905</u>
 - mRNA levels of homeobox C6 (HOXC6), distal-less homeobox 1 (DLX1), and tudor domain containing 1 (TDRD1)
 - Source: post-DRE urine
 - Endpoint: High grade prostate cancer
- Outperforms PCPT risk calculator
- Reduces biopsy rate

Estimated 43-58% reduction

• NPV 93-94% for high grade PCa

Van Neste et al, Eur Urol, 2016

Risk Score Predicts High-Grade Prostate Cancer in DNA-Methylation Positive, Histopathologically Negative Biopsies

Leander Van Neste,¹ Alan W. Partin,² Grant D. Stewart,³ Jonathan I. Epstein,² David J. Harrison,⁴ and Wim Van Criekinge⁵*

- Examined association of degree of methylation and <u>high grade prostate cancer</u>
- Outperforms PCPT risk calculator
- Estimated 30% additional biopsy reduction

Van Neste et al, Prostate, 2016

Tissue-based Platforms for Prognosis

- Prolaris[®] (Myriad, Inc)
 - Cell cycle progression signature (31 genes)
 - Endpoint: PCSM, risk stratification
- Oncotype DX[®] Prostate (Genomic Health, Inc)
 - Multi-pathway signature (17 genes)
 - Endpoint: adverse pathology
- Decipher[®] (GenomeDx Biosciences, Inc)
 - Whole genome RNA-seq (22 genes)
 - Endpoint: metastasis-free survival, response to adjuvant RT
- **ProMark**[®] (Metamark Genetics, Inc)
 - Proteomic signature (8 biomarkers)
 - Endpoint: unfavorable pathology

NRG GU006: Phase II, Double-Blinded, Placebo Controlled Randomized Trial of Salvage Radiotherapy With or Without Enhanced Anti-Androgen Therapy With Apalutamide in Recurrent Prostate Cancer

Pls: F Feng & D Spratt

Advancing Research. Improving Lives.™

Emerging Model of Cancer Treatment

Tumor, plasma, and germline acquired for molecular diagnostics

Therapy selected based on molecular characteristics

CONTRACTOR CO

Somatic Mutation Panels

- Hotspot Panels
 - 1kb-200kb typical
 - Partial gene sequencing
 - Multiplex PCR-based enrichment
 - CNV/fusion detection uncommon

- 200kb-2,000kb typical
- Full gene sequencing
- Capture-based enrichment
- CNV/fusion detection common

Recently Identified Recurrently Mutated Genes in Prostate Cancer using NGS

Gene	Mechanism	Frequency	Representative Study	Tumors Tested
SPOP	Mutation	6-15%	Barbieri 2012 Nat Genet	Localized
FOXA1	Mutation	4%	Barbieri 2012 Nat Genet	Localized
MED12	Mutation	5%	Barbieri 2012 Nat Genet	Localized
CHD1	Deletion	8%	Grasso 2012 Nature	Advanced
MLL2	Mutation	9%	Grasso 2012 Nature	Advanced
AURKA/ MYCN	Co- Amplificatio n	40% (NEPC)	Beltran 2011 Cancer Discovery	Neuroendocrine
CTNNB1	Mutation	4%	Robinson 2015 Cell	Advanced
CDK12	Mutation	13%	Robinson 2015 Cell	Advanced
ZBTB16	Deletion	10%	Robinson 2015 Cell	Advanced

Grand Rounds

Genomic Classification of Prostate Cancer

From Beltran and Rubin 2013

Comprehensive Somatic Panel Example

	ABL1	AKT1	ALK	AR	ARAF	ASXL1	ATM	AURKA	BCR	BRAF
Tier 1:	BRCA1	BRCA2	CALR	CCND1	CEBPA	CSF3R	DDR2	DNAJB1	DNMT3A	EGFR
Currently	EML4	ERBB2	ERCC2	ESR1	FGFR2	FGFR3	FGFR4	FLT3	HIF1A	IDH1
Currently	IDH2	JAK2	KIT	KRAS	MAP2K1	MET	MLL	MPL	MTOR	MYD88
actionable	NOTCH1	NOTCH2	NPM1	NRAS	NTRK1	NTRK2	NTRK3	PALB2	PDGFRA	PIK3CA
	PML	PTEN	RARA	RET	ROS1	SETBP1	SMO	STK11	TP53	VHL
	ABL2	AKT2	AKT3	ARID1A	ATRX	AURKB	AXL	BAP1	BARD1	BCL2L11
Tier 2:	BCOR	BCORLI	BRIPI	CBL	CBLB	CCNEI	CDK4	CDK6	CDK8	CHEKI
	CHEK2	DAXX	ERBB3	ERBB4	FAM175A	FANCA	FBXW7	FGFRI	FLII	FL14
Actionable in	GATA2	GATA3	GLII	GNATI	GNAQ	GRIVI3	H3F3A	HDAC4	HRAS	IGFIR
the near future		JAK3	KDIVI6A	KDR MUU1	KIF5B	MAPZKZ	MAPKI	MCIR	MCLI	
	NE1	NE2	NKY2 1	NILTI DAVE	DOCEDD	NISHZ DUE6	NISHO DIV2D1	DMS2		
	INF1	INFZ	NKAZ-1	FAXS	FDGFKD	FHFU	FINSKI	FIVI32	FOLDI	FULE
	RAD51C	RAD51D	RAF1	RB1	RSP02	RSP03	RUNX1	SHH	SMAD4	SMARCA4
	SRSF2	SUFU	SUZ12	TACSTD2	TET2	TMPRSS2	TSC1	TSC2	WT1	
	APC	BAK1	BCL2	CBLC	CBLC	CDH1	CDK12	CDK9	CDKN1A	CDKN2A
Tier 3:	CHD1	CREBBP	CRLF2	CSF1R	CTNNB1	CUX1	DEPDC5	DOCK7	EPHA3	EPHA5
Frequently	EPHB2	EPHB6	ETV6	EZH2	FKBP1A	FOXA1	GAB2	GATA1	GNAS	GRIN2A
riequentiy	HNF1A	IL7R	JAK1	MAP2K4	MED12	MIOS	MLH3	MTAP	MUTYH	MYCL1
mutated	NPRL2	NPRL3	PAK1	PBRM1	PLK1	PLK3	PLK4	PRPF40B	PTCH1	PTPN11
	PTPRD	RAC1	RAD21	RHEB	RICTOR	RPS14	RPTOR	SF1	SF3B1	SMAD2
	SMAD3	SMARCB1	SMC1A	SMC3	SPOP	SPRY4	SRC	TACC3	TET1	TET3
	TFG	TGFBR2	TRRAP	U2AF1	U2AF65	ZBTB16	ZRSR2			
Germline	ABCB1	ABCC4	ABCG2	CYP1B1	CYP2C19	CYP2C8	CYP2D6	CYP3A4	CYP3A5	DPYD
Germine	EIF3A	ESR2	FCGR1A	FCGR2A	FCGR3A	GSTP1	ITPA	LRP2	MAN1B1	MTHFR
pharmaco-	NQO1	NRP2	SLC19A1	SLC22A2	SLCO1B3	SOD2	SULT1A1	TPMT	TYMS	TYR
genomics	UGT1A1	UMPS								
					DNA Se	quence	d· >1.2	00 000	hn	
	Genes	larget	eu: 260)	> FOOV					
					×000×	Coverage	ge			

Pritchard et al. 2014 JMD 16:56-67.

Sample Issues

	Fresh Tumor Tissue	Fixed Tumor Tissue	Plasma ctDNA	
Quality	High	Moderate	Low	
Quantity	High		Very Low	
Tumor Content	High (usually)	High (usually)	Low (usually)	
False Negatives	Less common	Less common	More common	
False Positives	Less common	Fixation artifact	Somatic clones in blood misinterpreted as cancer- derived	

Germline DNA Repair Mutations Are Common in Metastatic Disease

Pritchard CC et al. N Engl J Med 2016. DOI: 10.1056/NEJMoa1603144

Adapted from Robinson 2015

Emerging Precision Targets

Mutation(s)	Metastatic Prostate Cancer Frequency	Potential Utility
HR DNA Repair (e.g. BRCA1/2)	~20%	Platinum therapy, PARP inhibitors
Mismatch DNA Repair (e.g. <i>MSH2</i>)	~5%	Immunotherapy
Androgen Receptor	40-60%	Anti-androgens
PI3K Pathway	30-60% (<i>PTEN</i>)	PI3K inhibitors
BRAF mutation/ rearrangement	~3%	BRAF or MEK inhibitors
RSPO2 fusions	~3%	WNT inhibitors

BRCA2-directed Chemotherapy

Selected Trials for mCRPC with Relevance to DNA repair defects

Phase	Agent	Short Name	Clinicaltrials.gov
	Rucaparib	TRITON3	NCT02975934
	Olaparib	PROFOUND	NCT02987543
II	Niraparib	GALAHAD	NCT02854436
	Talazoparib	TALAPRO	NCT03148795
П	Olaparib	BRCAaway	NCT03012321
II	Docetaxel and Carboplatin	(V) ABCD	NCT02598895 NCT02985021
II	Pembrolizumab	KEYNOTE-199	NCT02787005 NCT02312557
lb/ll	Pembrolizumab Combination Therapies	KEYNOTE-365	NCT02861573
II	Nivolumab Combination Therapies	CheckMate 9KD	NCT03338790

TRITON3: Rucaparib vs Enzalutamide, Abiraterone, or Docetaxel in mCRPC with HRD

ClinicalTrials.gov. NCT02975934

PROfound: Olaparib vs. Enzalutamide or Abiraterone in mCRPC with Prior Tx and HRD

N = 340

Summary

- Many novel and emerging biomarkers across the spectrum of prostate cancer
- Newer precision targets have been identified in prostate cancer through genomic sequencing efforts
 - Mutations may be actionable and have implications for both patient and unaffected relatives
 - Multiple issues in methodology, specimen considerations, and interpretations that may impact clinical decision making
- Await clinical trials in select (and unselected) patient populations

grandroundsinurology.com

Somatic Variant Interpretation: AMP/ASCO/CAP

Tier I: Variants of Strong Clinical Significance

Therapeutic, prognostic & diagnostic

Level A Evidence

FDA-approved therapy Included in professional guidelines

Level B Evidence

Well-powered studies with consensus from experts in the field

Tier II: Variants of Potential Clinical Significance

Therapeutic, prognostic & diagnostic

Level C Evidence

FDA-approved therapies for different tumor types or investigational therapies Multiple small published studies with some consensus

Level D Evidence Preclinical trials or a few case reports without consensus

Tier III: Variants of Unknown Clinical Significance

Not observed at a significant allele frequency in the general or specific subpopulation databases, or pan-cancer or tumor-specific variant databases

No convincing published evidence of cancer association

Tier IV: Benign or Likely Benign Variants

Observed at significant allele frequency in the general or specific subpopulation databases No existing published evidence of cancer association

Li et al. JMD (2017) PMID:27993330

Reporting Considerations

ANALYTICAL

- 1. Types of mutations validated
- 2. Limits of detection
- 3. Pseudogenes
- 4. Platform-specific considerations

CLINICAL

- 1. Clinical context (e.g. post Abi or Enza)
- 2. Strategy for poorly characterized variants
- 3. Specimen source
- 4. Net Benefit or Harm (e.g. reporting VUS)

Issues with Plasma ctDNA

- Source of somatic mutations may <u>NOT</u> be from the cancer of interest
 - Age related clones
 - Somatic clones from other benign sources
- Sub-clonal passenger mutations misinterpreted as actionable
 - Beware mutations reported at low variant fraction

Gene Amplification/Deletions Detected by NGS

(example of copy number calling next-gen sequencing in an advanced prostate cancer tumor)

ctDNA vs. Tissue

• n=9 cancer patients

Kuderer et al. JAMA Oncol. (2016) PMID:27978570

Loss of Heterozygosity (LOH)

- Can be determined by SNP variant allele fraction
- Useful as measure of "HRDness"
- Performance dependent on tumor content

Reference: Clinical Genomics, 2015, Pages 165–187 http://www.sciencedirect.com/science/article/pii/B9780124047488000113

MSI Detection by NGS Fraction Unstable Microsatellite Loci 0.8₇ 0.6-**MSI POS** 0.4-0.2-**NEG** 0.0 MMR Intact **MMR Deficient Prostate Cancer** Prostate Cancer

MSI = microsatellite instability, MMR= Mismatch Repair

MSI-NGS methods (mSINGS): Salipante et al. Clin. Chem. 2014; Hempelmann et al. JMD 2015

grandroundsinurology.com

PASS Risk Calculator Interface v2.0

*Pending variables: PSA kinetics, biomarkers

PASS Risk Calculator v2.0

https://canarypass.shinyapps.io/biopsy_nomogram/

"Next-Generation" Sequencing (NGS)

- Sequence up to a whole tumor genome quickly
- Can accurately detect tumor mutations
- Now used routinely for cancer care
- Not widely used yet for prostate cancer

Gene Fusions Detected by NGS

TMPRSS2-ERG identified by Comprehensive NGS Panel

Fusions can be detected at DNA or RNA level

Biomarker Sources and Targets

<u>Source</u>	Targets	Examples
Tissue	RNA, DNA, Protein	Gene expression signatures, cytogenetic changes, various protein targets
Blood/BM	Circulating/secreted molecules, cells	CTCs, 4Kscore, PHI
PBMCs	DNA	genomics: CNV, SNPs
Urine	RNA, DNA, Protein	PCA3, T2-ERG fusion

Emerging Model For Metastatic Prostate Cancer

Tumor, plasma, and germline tissue evaluated

Genetic counseling based on tumor and germline

Heterogeneity

• Specimen

• Tumor

