

Grand Rounds in $UROLOGY_{\rm m}$

Next Generation Brachytherapy for Ablation

grandroundsinurology.com

Thomas J. Pugh M.D. Vice-Chair and Associate Professor Director of Genitourinary Cancer Clinical Services and Research Department of Radiation Oncology University of Colorado Hospital

• None

Indisputable Truth #1 – For localized prostate cancer Higher radiation dose = better cancer outcomes

- Radiation dose escalation improves biochemical control (Level 1 multiple RCTs), freedom from local recurrence (multiple RCTs), freedom from salvage therapy (multiple RCTs).
- Radiation dose escalation improves freedom from distant metastases (Level 1 – RTOG 0126)
- In select patients, dose escalation <u>may</u> also improve disease-specific and overall survival (prospective post-hoc and retrospective analyses).
- An upper limit to this effect has yet to be identified

Indisputable Truth #2

 Prostate brachytherapy is the most conformal and effective method for delivering doseescalated radiation therapy to the prostate.

Cs-131 Monotherapy Post-Implant Dosimetry

Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (ASCENDE-RT) Trial

- Patients: NCCN intermediate or high risk prostate cancer
- Intervention:
 - All: 12 months LHRH agonist + 4-weeks oral antiandrogen (8-months neoadjuvant) → 46 Gy/23 pelvis
 - Randomized: External beam (32 Gy/16) vs. LDR brachytherapy (I-125 115 Gy) boost
- Endpoints
 - Primary: bPFS
 - Secondary: OS, prostate cancer specific survival, metastases-free survival, toxicity, QOL
- Statistics: Assume ≥ 15% improvement in bPFS (nadir PSA + 2 ng/ml) at 6.5 years from randomization. Target = 400 patients.

ASCENDE-RT: Brachytherapy improves bPFS compared to dose escalated EBRT

ASCENDE-RT: Brachytherapy improves bPFS compared to dose escalated EBRT – Intermediate Risk Subset

Grand Rounds

ASCENDE-RT: Brachytherapy improves bPFS compared to dose escalated EBRT – High Risk Subset

ASCENDE-RT: No statistically significant differences in Distant Metastases, Disease-Specific Survival, or Overall Survival

	All patients (n=398)	By randomization		By actual treatment received		
Analysis		DE-EBRT (n=200)	LDR-PB (n=198)	DE-EBRT (n=195)	LDR-PB (n = 188)	Neither (n=15)
Patients						
Relapsed*	76 (19.1)	51 (25.5)	25 (12.6)	48 (24.6)	21 (11.2)	7 (46.7)
Nonrelapsed	322 (80.9)	149 (74.5)	173 (87.4)	147 (75.4)	167 (88.8)	8 (53.3)
Metastatic disease	35 (8.8)	18 (9.0)	17 (8.6)	18 (9.2)	14 (7.4)	3 (20.0)
Alive	330 (82.9)	162 (81.0)	168 (84.8)	155 (79.5)	163 (86.7)	12 (80.0)
Deceased	68 (17.1)	38 (19.0)	30 (15.2)	40 (20.5)	25 (13.3)	3 (20.0)
ANED	274 (68.8)	124 (62.0)	150 (75.8)	120 (61.5)	148 (78.7)	6 (40.0)
DNED	48 (12.1)	25 (12.5)	23 (11.6)	27 (13.8)	19 (10.1)	2 (13.3)
AWD	56 (14.1)	38 (19.0)	18 (9.1)	35 (17.9)	15 (8.0)	6 (40.0)
DOWD	20 (5.0)	13 (6.5)	7 (3.5)	13 (6.7)	6 (3.2)	1 (6.7)
Died of prostate cancer [†]	18 (4.5)	11 (5.5)	7 (3.5)	11 (5.6)	6 (3.2)	1 (6.7)

Morris et al. Int J Rad Bio Phys 2017

ASCENDE-RT: No difference in Distant Metastases, Disease-Specific Survival, or **Overall Survival**

	UVA			MVA Cox model		
Variable	HR	95% CI	P value	HR	95% CI	P value
Randomization arm ^{*†} (DE- EBRT vs LDR-PB)	1.29	0.80-2.08	.30	1.13	0.69-1.84	.62
PPC (unit $= 1\%$)	1.00	0.99-1.01	.61	NA	NA	NA
Clinical T stage [†] (T3a vs T1-T2)	1.04	0.62-1.74	.89	NA	NA	NA
$Log iPSA^*$ (unit = 1 log)	1.28	0.86-1.89	.23	1.18	0.80-1.73	0.42
Risk code ^{†‡} (high vs intermediate)	1.13	0.68-1.87	.64	NA	NA	NA
Number of high-risk features ^{†‡} ($\geq 3 \text{ vs} \leq 2$)	1.30	0.68-2.49	.42	NA	NA	NA
Gleason sum [†] (8-10 vs \leq 7)	1.23	0.76-2.01	.40	NA	NA	NA
Age^* (unit = 1 y)	1.05	1.02-1.09	.004 [§]	1.05	1.02-1.09	.006
Disease status* (relapse vs no relapse)	6.60	3.80-11.4	<.001 [§]	6.30	3.62-10.9	<.001

Table 4	Univariate and multivariable analysis (Cox model; backwards: conditional) for all-cause mortality
---------	---

Morris et al. Int J Rad Bio Phys 2017

ASCENDE-RT: FFBF by PSA definition

ASCENDE-RT using PSA <0.2 ng/mL

Kaplan-Meier (95% Cl)		By treatment received			
		DE-EBRT (N=195)	LDR-PB (N=188)		
b-PFS	5 yr	46.5 (±7.6)	87.9 (±5.0)		
	7 yr	37.7 (±8.0)	86.0 (±5.6)		
	9 yr	31.5 (±8.8)	82.2 (±7.0)		

ARS Questions for Discussion

For locally advanced intact prostate cancer, prospective randomized trials have demonstrated the following benefits from dose-escalation:

- A. Biochemical Control
- B. Distant Metastases
- C. Freedom from Salvage Therapy
- D. Grade 3 or higher toxicity
- E. Disease specific survival

ARS Question for Discussion

Which of the following might improve the therapeutic ratio when using prostate brachytherapy for prostate dose escalation?

- A. Multi-parametric MRI integration
- B. Advanced PET Radiotracer Imaging
- C. Differential radiation dosing (focal therapy)
- D. Intensification of anti-androgen therapy
- E. All of the above

