Neoadjuvant/Adjuvant Chemotherapy: Are We Ready to Accept NAC as the Gold Standard?

Seth P. Lerner, MD, FACS
Scott Department of Urology
Beth and Dave Swalm Chair in Urologic Oncology
Baylor College of Medicine
Disclosures

• Clinical trials
 – Endo, FKD, JBL (SWOG), Roche/Genentech (SWOG), UroGen, Viventia

• Consultant
 – BioCancell, UroGen, Vaxiion

• Advisory Board
 – BioCancell, miR Scientific, QED Therapeutics, UroGen

• MSD Korea, Dava Oncology – honoraria
Overview

• Why integrate peri-operative chemotherapy and radical cystectomy
• Evidence supporting NAC
• Limited evidence supporting Adjuvant
• One size fits all
• Invent the future: Precision medicine
Metastatic Bladder Cancer
M-VAC vs Gemcitabine/Cis-platin - Overall Survival

This trial has established Gem/Cis as a viable treatment option

Updated (Ann Oncol 2006) results similar

von der Maase, H et al J Clin Oncol 23:4602, 2005
SWOG 8710: Overall Survival by Treatment Arm

<table>
<thead>
<tr>
<th>ARM</th>
<th>No. Pts.</th>
<th>No. Pts. Dead</th>
<th>Median Survival</th>
<th>%5 Yr Survival</th>
<th>p Value (log-rank, 1-sided)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>154</td>
<td>96</td>
<td>43.2 mos</td>
<td>42.1%</td>
<td></td>
</tr>
<tr>
<td>MVAC</td>
<td>153</td>
<td>90</td>
<td>74.7 mos</td>
<td>57.2%</td>
<td>0.044</td>
</tr>
</tbody>
</table>
Neoadjuvant Chemotherapy Improves pCR (P0) rate

<table>
<thead>
<tr>
<th>Source</th>
<th>CTx + cyst</th>
<th>cyst alone</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRC/International (CMV)</td>
<td>32.5%</td>
<td>12.3%</td>
</tr>
<tr>
<td>SWOG (MVAC)</td>
<td>38%</td>
<td>15%</td>
</tr>
<tr>
<td>Nordic II (MTX/Cisplatin)</td>
<td>26.4%</td>
<td>11.5</td>
</tr>
<tr>
<td>MSKCC (GC)</td>
<td>26%</td>
<td>NA</td>
</tr>
<tr>
<td>MSKCC (M-VAC)</td>
<td>28%</td>
<td>NA</td>
</tr>
<tr>
<td>Columbia (MVAC)</td>
<td>31%</td>
<td>NA</td>
</tr>
<tr>
<td>Columbia (GC)</td>
<td>25%</td>
<td>NA</td>
</tr>
<tr>
<td>CCF (GC)</td>
<td>7%</td>
<td>NA</td>
</tr>
<tr>
<td>International consortium</td>
<td>NA</td>
<td>5.1%</td>
</tr>
</tbody>
</table>
Higher risk of relapse:
- 3-D mass on EUA
- Prostatic stroma, vaginal wall involvement (T4a)
- LVI - increased risk of occult nodal involvement
- Hydronephrosis - Increased risk of extra-vesical extension
- Micropapillary tumor
- Small cell neuroendocrine tumor

SWOG 8710 Neoadjuvant M-VAC- Benefit cT2 vs. cT3-T4a

Pts with cT2 also benefit from neoadjuvant chemotherapy

![Median survival graph]

- cT2: 105 vs. 75 mos
- cT3-4a: 65 vs. 24 mos

Low Risk Patients Benefit from NAC

- Mayo Clinic 1980-2016
- RC for cT2-4N0; n = 1931
- Low risk (n = 1025; 104 with NAC)
- NAC in LR patients was associated with greater odds of pT0 (OR 3.05; \(p < 0.001 \)) and < pT2 (OR 2.53; \(p < 0.001 \)) disease, but was not significantly associated with CSS (\(p = 0.31 \))
- “These data support offering NAC to all eligible MIBC patients irrespective of risk classification, and may aid in informed discussion of treatment sequencing for LR patients.”

Lyon, et al World J Urol epub 11/13/19
Neo-adjuvant Chemotherapy Meta Analysis
5% Survival Advantage

- Individual patient data from 6 randomized trials
- 9% survival benefit with platinum based combination chemotherapy

Neoadjuvant chemotherapy with cis-platin based multi-agent regimen standard of care

- AUA: Strong Recommendation; Evidence Level: Grade B
- M-VAC/CMV only regimens tested in Phase III trials
- Common use of GC based on patients with metastatic disease and has not been evaluated in Phase III neoadjuvant trials
EORTC Adjuvant M-VAC

Adjuvant Chemotherapy for Invasive Bladder Cancer: A 2013 Updated Systematic Review and Meta-Analysis of Randomized Trials

Fig. 2 Pooled hazard ratios across all nine studies by chemotherapy type CI = confidence interval; ES = effect size.

945 patients in 9 trials

HR 0.77 - 23% relative reduction in Death

• AUA: Patients with RC path pT3/T4 and/or N+ who have not received cisplatin-based NAC should be offered adjuvant cisplatin-based chemotherapy. (Moderate Recommendation; Evidence Level: Grade C)

• EAU and ASCO: Data are not convincing enough to give an unequivocal recommendation for the use of immediate adjuvant chemotherapy as compared to chemotherapy at the time of relapse (1A)

• NCCN: Consider if pT3-4, Tany N+, if no NAC given (2B)
• RISC database; 2005-2012; >pT2; 28 centers
 – NAC cT2, cN0, M0
 – NAC + RC or RC + AC pT2, any pN, M0
 – 656/1892 that underwent RC

DFS

<table>
<thead>
<tr>
<th>Patients at risk</th>
<th>NC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>331</td>
<td>144</td>
<td>145</td>
</tr>
<tr>
<td>37</td>
<td>12</td>
<td>71</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

OS

<table>
<thead>
<tr>
<th>Patients at risk</th>
<th>NC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>331</td>
<td>183</td>
<td>202</td>
</tr>
<tr>
<td>37</td>
<td>46</td>
<td>95</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
</tr>
</tbody>
</table>
VESPER - NCT01812369

- Phase III NAC or Adjuvant (Rouen)
- RC
- GC q3 weeks x 4 vs. HD M-VAC q 2weeks x 6
- Primary endpoint PFS at 3 years
- Powered to detect 10% improvement from 50% at 3 years with HD M-VAC
- 500 patients
• Currently one size fits all
• Prognostic biomarkers
• Predictive biomarkers
 – COXEN
 – DNA damage repair genes
 – Expression subtypes
• Precision medicine
COXEN prediction of treatment outcome in patients treated with neoadjuvant MVAC

Ref: Clin Can Res 2005;11(7): 2625
Tx: Neoadjuvant MVAC (N=45) + surgery or XRT
Outcome: Downstaging, Overall survival
SWOG S1314
COXEN Validation Neoadjuvant Chemotherapy Trial

Biomarker validation and Biomarker discovery

Activated July 1, 2014

Assessment
To characterize the relationship of MVAC- and GC-specific COXEN scores in terms of pT0 rate

Selection Criteria SWOG 8710 (T2-T4a N0M0, cisplatin eligible)

Tumour Sample TURBT

Randomize to chemo n=184

Randomization

Gem-Cis

DD-MVAC

Cystectomy Pathology

Collection
Tissue, blood, urine

Molecular Analysis
Gene expression
Sequencing
microRNA
SNP

Collection
Tissue (>P0), blood, urine

Molecular Analysis
Gene expression
Sequencing
microRNA
SNP

Tumor Sample TURBT

Collection
Tissue, blood, urine

Molecular Analysis
Gene expression
Sequencing
microRNA
SNP

Collection
Tissue (>P0), blood, urine

Molecular Analysis
Gene expression
Sequencing
microRNA
SNP

 activated July 1, 2014
DNA Damage Repair Pathway
Alterations Predict NAC Response

Van Allen et al, Cancer Discovery 4:1140, 2014

Iyer, et al JCO 36:1949-1956, 2018
ATM, FANC, RB-1 and NAC Response
A031701: A phase II study of dose-dense Gemcitabine plus Cisplatin in patients with muscle-invasive bladder cancer with bladder preservation for those patients whose tumors harbor deleterious DNA damage response (DDR) gene alterations

Modified DDR gene panel:
- ERCC2
- ERCC5
- BRCA1
- BRCA2
- RAD51C
- ATR
- RECQL4
- ATM
- FANCC

Deleterious alterations in one or more of these genes will allow patients to be potentially eligible for the bladder-sparing arm of the study.

246 patients screened
59 patients
187 patients

Courtesy Gopa Iyer
Blocking PGE$_2$–induced tumour repopulation abrogates bladder cancer chemoresistance

Antonina V. Kurtova1,2, Jing Xiao3, Qianxing Mo3, Senthil Pazhanisamy4, Ross Krasnow4, Seth P. Lerner4, Fengju Chen3, Terrence T. Roh1,5, Erica Lay4, Philip Levy Ho6 & Keith Syson Chan1,2,3,4

Celecoxib with Chemotherapy in Localized, Muscle Invasive Bladder cancer (BLAST)

Tx: GC x 4 cycles + Celecoxib 100mg qd

Primary aims:

1) mRNA expression in pre- and post- chemotherapy specimens
2) Toxicity

Future Treatment Paradigm for MIBC (?)

TCGA (n=412)

Luminal
- KRT20+, GATA3+, FOXA1+

Basal/Squamous
- KRT5,6,14+, GATA3-, FOXA1-

Neuronal
- FGFR3 mut, fusion, amp
- Papillary histology
- SHH+
- Low CIS

Luminal-papillary
- Low risk
- NAC*
- FGFR3 inhibitors

Luminal-infiltrated
- Low purity
- EMT markers (TWIST1, ZEB1)
- miR-200 family
- Medium CD274 (PD-L1), CTLA-4
- Myofibroblast markers
 - 'p53-like'

Luminal
- UPKs
 - KRT20
 - SNX31

Basal/Squamous
- Female
- Squamous differentiation
- Basal keratin markers
- High CD274 (PD-L1), CTLA4
- Immune infiltrates

Neuronal
- SOX2
- DLX6
- MSI1
- PLEKHG4B
- E2F3/SOX4 amp
- High cell cycle

Targeted therapy?
- Anti-PD-L1, PD-1, CTLA-4

Anti-PD-L1, PD-1, CTLA-4
- Cisplatin-based NAC

Cisplatin-based NAC
- Low response rate

Low risk response based on preliminary data (Seiler et al. 2017)

Etoposide/Cisplatin NAC

* Cell, submitted
Retrospective Data: NAC Improves survival for Basal tumors (independent of Path at RC)

Seiler et al, EU 2017
Summary

• Level I evidence and guidelines support NAC in patients with T2-T4aNxM0 urothelial bladder cancer
• No high level evidence supporting Adjuvant chemotherapy
 – Up to 30% of patients may not be eligible after RC
• Current paradigm is a “one size fits all”
• Clinical trials testing predictive biomarkers
• Expression subtypes may stratify treatment approach but require validation