Genomic Profiling of Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC) for the Evaluation of Rucaparib: Next-Generation Sequencing (NGS) of Tumor Tissue and Cell-Free DNA (cfDNA) Justin Rains (Clovis Oncology) on behalf of: Evan R. Goldfischer,¹ Ray McDermott,² Josep Maria Piulats,³ Jeremy D. Shapiro,⁴ Peter Ostler,⁵ M. Neil Reaume,⁶ Inge Mejlholm,⁷ Ian Byard,⁸ Arif Hussain,⁹ David Morris,¹⁰ David Campbell,¹¹ John Burke,¹² Brigitte Laguerre,¹³ Teresa Mele,¹⁴ Eric Voog,¹⁵ Ali Benjelloun,¹⁶ Andrea Loehr,¹⁷ Andrew D. Simmons,¹⁷ Tony Golsorkhi,¹⁷ Simon P. Watkins,¹⁷ Simon Chowdhury,¹⁸ Charles Ryan,¹⁹ Wassim Abida²⁰ ¹Premier Medical Group of the Hudson Valley, Poughkeepsie, NY; ²Adelaide and Meath Hospital (Incorporating the National Children's Hospital), Dublin, Ireland; ³Instituto Catalan de Oncologia, Barcelona, Spain; ⁴Cabrini Hospital, Malvern, VIC, Australia; ⁵Mount Vernon Cancer Centre, Northwood, UK; ⁶The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada; ⁷Vejle Sygehus, Vejle, Denmark; ⁸Royal Hobart Hospital, Hobart, TAS, Australia; ⁹University of Maryland Greenebaum Cancer Center, Baltimore, MD; ¹⁰Urology Associates Clinical Research, Nashville, TN; ¹¹University Hospital Geelong (Barwon Health), Geelong, VIC, Australia; ¹²Rocky Mountain Cancer Centers – USOR, Aurora, CO; ¹³Centre Eugène Marquis, Rennes, France; ¹⁴Royal Marsden Hospital, London, UK; ¹⁵Clinique Victor Hugo Centre Jean Bernard, Le Mans, France; ¹⁶Centre Hospitalier Universitaire Dr-Georges-L.-Dumont, Moncton, NB, Canada; ¹⁷Clovis Oncology, Inc., Boulder, CO; ¹⁸Guy's Hospital, London, UK, and Sarah Cannon Research Institute, London, UK; ¹⁹University of Minnesota, Minneapolis, MN; ²⁰Memorial Sloan Kettering Cancer Center, New York, NY ## **Background and Methods** - The TRITON2 and TRITON3 studies are enrolling mCRPC patients with a deleterious alteration in a DDR gene (eg, BRCA1/2) to evaluate treatment with the PARP inhibitor rucaparib - Both studies are enrolling patients at sites in the United States and throughout the world - The DDR alteration may be identified by local testing or central screening of tissue or plasma using NGS assays by Foundation Medicine, Inc. | | Saliva / blood | Tissue | Plasma | |------------------------------------|--|--|--| | Collected from patient | Buccal swab / whole blood | Contemporaneous or archival tumor tissue | Whole blood | | Components analyzed | Tissue cells / leukocytes | FFPE tumor tissue | ctDNA | | Alteration types detected | Germline | Germline & somatic | Germline & somatic | | Number of genes typically assessed | ≈2–45 | ≈150–400 | ≈50–100 | | Genes typically included | Cancer-related genesBRCA1, BRCA25–10 other DDR genes | Cancer-related genesBRCA1, BRCA210–30 other DDR genes | Cancer-related genesBRCA1, BRCA22–10 other DDR genes | | Advantages | Minimally invasiveLow cost | More comprehensive (eg, MSI, TMB,
LOH) | Minimally invasiveQueries DNA from multiple tumor lesions | | Disadvantages | Limited to inherited mutationsFewer genes | Challenging to collect metastatic tissueHigh assay-failure rate | Technical challenges to detect certain alteration types | ## **Results and Conclusions** - The frequency of deleterious BRCA1/2 alterations was higher in plasma (10.6%) than in the predominantly archival tissue samples (8.8%) - Consistent with higher frequencies of DDR alterations in mCRPC patients with more advanced disease - Both tumor tissue and ctDNA plasma assays were used to successfully identify patients with a DDR gene alteration for treatment with rucaparib - Plasma is less invasive to collect and has a higher success rate than tumor tissue (97% vs ≈70%) - However, the tissue test is more comprehensive regarding number of genes, alteration types, and other genomic features queried - There was high concordance between the tissue and plasma assays - 74% (25/34) of patients with a BRCA1/2 mutation were identified by both tissue and plasma sample - The TRITON2 and TRITON3 studies are evaluating the activity of rucaparib in mCRPC patients with a deleterious alteration in a DDR gene - Rucaparib received Breakthrough Therapy designation from the U.S. FDA on October 2, 2018, based on the initial efficacy and safety data from TRITON2 - Rucaparib is approved in the United States for patients with recurrent ovarian cancer FDA, Food and Drug Administration.