PSMA Imaging in the PSA-only Recurrent

Gerald L. Andriole, M.D. Robert K. Royce Distinguished Professor Chief of Urologic Surgery Siteman Cancer Center Washington University School of Medicine

Incidence of BCR after surgery or radiation for clinically localized prostate cancer

- Occurs within 10 y in 20% to 40% of patients after RP, 30% to 50% after RT
- Median time to BCR is typically 2 to 3 y but can occur up to 20 years after primary therapy

Clinical Dilemmas in men with BCR

- Cannot tell where recurrent disease is located
- Absolute PSA levels tend to correlate with disease burden and risk for metastasis
- Shorter PSADT associated with higher risk of metastases
- Time to BCR is prognostic in most, but not all, studies

Sanda MG, Chen RC, Crispino T, et al. http://www.auanet.org/guidelines/clinically-localized-prostate-cancer-new-(aua/astro/suo-guideline-2017). Darwish OM, et al. *Front Oncol*. 2012;2:1-6. Paller CJ, et al. *Clin Adv Hematol Oncol*. 2013;11:14-23.

Diagnostic Evaluation of Patients With BCR

- No guidelines on frequency of evaluation in men with BCR
- NCCN Guidelines[®] note:
 - Factors affecting BCR imaging use after RP
 - Risk group before surgery
 - Gleason score
 - Stage
 - Serum PSA
 - PSADT after recurrence
 - Cross-sectional imaging and conventional Tc-99m bone scans are rarely positive in asymptomatic men with PSA < 10 ng/mL
 - Imaging should be performed more frequently when PSADT ≤ 8 mo

NCCN NCCN Cancer Network®

Table 2. Summary of Main PET/CT Imaging Tracers Studied in Prostate Cancer*

Tracer	Half- life (min)	Cyclotron	Mechanism of action	Excretion	Sensitivity (%)*	Specificity (%)*	FDA Status	Panel Recommendation
C-11 choline	20	Onsite	Cell membrane synthesis	Hepatic	32–93	40–93	Cleared	May be used for detection of biochemically recurrent small- volume disease in soft tissues
F-18 fluciclovine	110	Regional	Amino acid transport	Renal	37–90	40–100	Cleared	May be used for detection of biochemically recurrent small- volume disease in soft tissues
F-18 NaF	110	Regional	Adsorption within bone matrix	Hepatic	87–100	62–89	Cleared	May be used after bone scan for further evaluation of equivocal findings
C-11 acetate	20	Onsite	Lipid synthesis	Lung	59-69	83–98	Not cleared	May be used in clinical trial or registry
Ga-68 PSMA	68	Generator (no cyclotron)	PSMA analog	Renal	76–86	86–100	Not cleared	May be used in clinical trial or registry

* Interpret with caution; few studies used biopsy/surgery as gold standard; see Nuclear Imaging, above, for references.

Meta analysis: ¹¹C-Choline-PET/CT for Prostate Cancer Biochemical Recurrence

- 18 studies (2,126 patients)
 - Pooled detection rate 62%
- 12 studies (1,270 patients) with adequate data to assess sensitivity and specificity
 - Pooled sensitivity (Sens) 89%
 - Pooled specificity (Spec) 89%
- Local recurrence: Sens 61%, Spec 97%
- Nodal/distant metastasis: 36% detection rate
- Bone metastasis: 25% detection rate

¹¹C-Choline-PET/CT Sensitivity by PSA Level

- Analysis of 358 patients post-RP with BCR (≥ 2 consecutive PSA measurements > 0.2 ng/mL)
 - Overall sensitivity /specificity: 85% /93%
- Detection rate by PSA level:
 - PSA 0.2 to 1 ng/mL: 19%
 - PSA 1 to 3 ng/mL: 46%
 - PSA > 3 ng/mL: 82%
- Package insert for ¹¹C-choline notes reduced sensitivity and specificity in patients with PSA levels < 2.0 ng/mL

¹⁸F-Fluciclovine (FACBC)

- *anti*-1-amino-3-[¹⁸F]fluorocyclobutane-1-carboxylic acid
- Synthetic, unnatural alicyclic L-leucine analog accumulates in prostate cancer cells
 - Not metabolized like ¹¹C-methionine
 - Relatively little renal excretion
- Uptake related to functional activity of amino acid transporters, which are upregulated in prostate cancer cells

Multicenter Study of FACBC-PET/CT in Biochemically Recurrent Prostate Cancer

- 596 patients (4 sites) with BCR after RP and/or RT
- PSA median (range): 2.0 (0.05-82.0)
- Endpoints
 - Detection rate stratified by baseline PSA
 - Diagnostic performance vs pathology reference standard (N=143)

Fluciclovine in Biochemically Recurrent Prostate Cancer

Adapted from Bach-Gansmo, J Urol, 2017.

Performance of Axumin (fluciclovine F18) in patients with biochemically suspected recurrent prostate cancer¹

On average, the readers correctly predicted the histology findings for 77% of the images (range: 75%-79%). For the approximately one-third of images with suspicious lesions outside the region of the prostate bed, readers correctly identified the histology finding in an average of 90% of the images (range: 88%-93%).

1. Axumin® (fluciclovine F 18) injection [Prescribing Information]. Blue Earth Diagnostics, Ltd; August 2016.

The Impact of Positron Emission Tomography with ¹⁸F-Fluciclovine on the Treatment of Biochemical Recurrence of Prostate Cancer: Results from the LOCATE Trial

Gerald L. Andriole,*,† Lale Kostakoglu, Albert Chau,‡ Fenghai Duan,‡ Umar Mahmood, David A. Mankoff,‡ David M. Schuster‡ and Barry A. Siegel‡ on Behalf of the LOCATE Study Group

- ¹⁸F-fluciclovine detected lesions in 57% of patients.
 - PSA: 0-0.5ng/mL: 31%
 - >0.5-1.0ng/mL: 50%
 - 1.0-2.0ng/mL: 66%.
- Management plans were revised in 126/213 patients (59%, 95% CI: 52–66).
 - 78% were 'major' changes involving a change in treatment modality.
 - 70% were informed by positive ¹⁸F-fluciclovine PET/CT findings.

https://doi.org/10.1016/j.juro.2018.08.050 Vol. 201, 322-331, February 2019 Printed in U.S.A.

Prostate Specific Membrane Antigen (PSMA)

- PSMA is normally expressed by cells in the CNS, normal prostate, proximal renal tubules and salivary gland
- High expression in prostate cancer cells (with further increases when tumors become castration resistant)
- New, small molecule ligands target the extracellular domain of PSMA (unlike Prostascint, which targets the intracellular domain)
- F-18 and Ga-68 agents under investigation

Performance of ⁶⁸Ga-PSMA PET for BCR

Detection efficacy stratified by PSA-values

Choline labelled agents:

16% for PSA <1 ng/ml, 26% for PSA <2

ng/ml

Treglia et al, Clin Chem Lab Med 2013

Perrera et al Eur Uro. 2016

Efficacy, Predictive Factors, and Prediction Nomograms for ⁶⁸Ga-labeled Prostate-specific Membrane Antigen–ligand Positron-emission Tomography/Computed Tomography in Early Biochemical Recurrent Prostate Cancer After Radical Prostatectomy

В	0	10	20	3	0	40	50	60	7	0	80	90	10
Points	L	+++++	1.1.1		1.1.1	111				<u> </u>	111	111	
Last PSA value (ng/ml) before PSMA PET	0.2	0.3 0.4	0.5	0.6	0.7	0.8	0.9 1						
Initial T-Stage	pT1-pT	pT3a-p1 2c	74										
Initial N-Stage	pNO	pN1											
Grade group	1-3			4-5									
Radiotherapyafter RPE	no	ye	s										
ADT at time of PSMA PET	no												ye
Time interval from RPE to PSMA PET in months	0	(
Total points	0	20	40	60	80	100	120	140	160	180	200	220	240
Probability for positivity													
in PSMA PET 0:	3 0.4	0.5	0.6	0.7	0.	в	0.9)	0.95	0.97	0.98		

EUROPEAN UROLOGY 73 (2018) 656-661

Impact of ⁶⁸Ga-PSMA PET on the Management of Patients with Prostate Cancer: A Systematic Review and Meta-analysis

15 Studies 54% Treatment change

EUROPEAN UROLOGY 74 (2018) 179-190

A Prospective Head-to-Head Comparison of ¹⁸F-Fluciclovine With ⁶⁸Ga-PSMA-11 in Biochemical Recurrence of Prostate Cancer in PET/CT

Pernthaler et al

Clinical Nuclear Medicine • Volume 00, Number 00, Month 2019

Results: The overall detection rate for PCa recurrence was 79.3% in ¹⁸F-fluciclovine and 82.8% in ⁶⁸Ga-PSMA-11 (P = 0.64). Local recurrence was detected in 37.9% on ¹⁸F-fluciclovine and in 27.6% on ⁶⁸Ga-PSMA-11 (P = 0.03). Local pelvic lymph node recurrence was detected on ¹⁸F-fluciclovine versus ⁶⁸Ga-PSMA-11 in 46.6% versus 50%, in extrapelvic lymph node metastases in 41.4% versus 51.7% and in bone metastases in 25.9% versus 36.2%. Lesion-based analysis showed identical findings in local pelvic lymph nodes in 39.7%, in extrapelvic lymph nodes in 22.4%, and in bone metastases in 13.8%.

Conclusions: The advantage of ¹⁸F-fluciclovine is detecting curable localized disease in close anatomical relation to the urinary bladder, whereas ⁶⁸Ga-PSMA-11 fails because of accumulation of activity in the urinary bladder. ¹⁸F-fluciclovine is almost equivalent to ⁶⁸Ga-PSMA-11 in detecting distant metastases of PCa recurrence.

¹⁸F-fluciclovine PET-CT and ⁶⁸Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial

Findings Between Feb 26, 2018, and Sept 20, 2018, 143 patients were screened for eligibility, of whom 50 patients were enrolled into the study. Median follow-up was 8 months (IQR 7–9). The primary endpoint was met; detection rates were significantly lower with ¹⁸F-fluciclovine PET-CT (13 [26%; 95% CI 15–40] of 50) than with PSMA PET-CT (28 [56%; 41–70] of 50), with an odds ratio (OR) of 4.8 (95% CI 1.6–19.2; p=0.0026) at the patient level; in the subanalysis of the pelvic nodes region (four [8%; 2–19] with ¹⁸F-fluciclovine vs 15 [30%; 18–45] with PSMA PET-CT; OR 12.0 [1.8–513.0], p=0.0034); and in the subanalysis of any extrapelvic lesions (none [0%; 0–6] vs eight [16%; 7–29]; OR non-estimable [95% CI non-estimable], p=0.0078).

Interpretation With higher detection rates, PSMA should be the PET tracer of choice when PET-CT imaging is considered for subsequent treatment management decisions in patients with prostate cancer and biochemical recurrence after radical prostatectomy and low PSA concentrations (≤ 2.0 ng/mL). Further research is needed to investigate whether higher detection rates translate into improved oncological outcomes.

www.thelancet.com/oncology Published online July 30, 2019 http://dx.doi.org/10.1016/51470-2045(19)30415-2

Figure 2: Detection rates per region and per patient (majority consensus reads) PSMA-prostate-specific membrane antigen. This study has several limitations. Technical parameters might have been confounding factors and could have potentially introduced a bias. ¹⁸F-fluciclovine uptake time was shorter than that recommended by guidelines.¹⁶ This might have affected pelvic image quality via higher blood pool activity at the time of imaging, and thus T and N staging, but not the extrapelvic (M) staging. Some ¹⁸F-fluciclovine PET-CT scans were done without intravenous CT-contrast application. However, the PSMA readers had recorded a higher number of PSMA scan reads than the ¹⁸F-fluciclovine readers had recorded of ¹⁸F-fluciclovine scan reads. This difference is probably because of the more frequent clinical use of PSMA, especially in Europe. However, care was taken to select

F-18 DCFPyL: Study in Metastatic Prostate Cancer

- 9 pts with suspected PC recurrence imaged with 18FDCFPyL PET/CT
 - 139 sites positive with ¹⁸F-DCFPyL uptake (138 definite, 1 equivocal) for metastases vs 45 lesions (30 definite, 15 equivocal) identified by conventional imaging modalities (CIM)
 - Large proportion of negative or equivocal lesions on CIM would be positive on ¹⁸F-DCFPyL (0.72; 95% CI, 0.55-.084)
 - Few negative lesions on ¹⁸F-DCFPyL would be positive on CIM (0.03; 95% CI, 0.01-0.07)

	All included		BR post RF)	BR post RT only*		
			only*				
Variable	Value	n	Value	n	Value	n	
Age (years)	69.1±6.5	130	68.4±6.3	92	70.8±6.9	35	
Body weight (kg)	87.4±14.4	130	86.9±14.4	92	87.7±13.5	35	
Height (cm)	177.3±6.8	130	176.9±6.8	92	177.5±6.6	35	
Injected activity (MBq)	369.2±47.2	130	367.8±47.1	92	371.1±46.0	35	
Uptake time (min)	120.4±1.5	130	120.5±1.7	92	120.2±0.6	35	
Inclusion criteria†							
Known PC after radical	94 (72.3%)	130	92 (100%)	92	0 (0.0%)	35	
prostatectomy with BR							
Known PC after radiation therapy with BR	37 (28.5%)	130	0 (0.0%)	92	35 (100%)	35	
PSA at baseline (ng/mL)	5.20±6.50	130	3.03±3.40	92	11.11±8.94	35	
PSA doubling time (months)	12.2±11.8	113	12.0±12.3	78	12.9±11.1	32	
Treatment history†							
Surgery	94 (72.3%)	130	92 (100%)	92	0 (0.0%)	35	
Radiotherapy [†]	45 (34.6%)	130	7 (7.6%)	92	35 (100%)	35	
Brachytherapy	27 (60.0%)	45	0 (0.0%)	7	26 (74.3%)	35	
External beam	20 (44.4%)	45	5 (71.4%)	7	13 (37.1%)	35	
IMRT	4 (8.9%)	45	2 (28.6%)	7	2 (5.7%)	35	
Proton	1 (2.2%)	45	0 (0.0%)	7	1 (2.9%)	35	
Radium-223	0 (0.0%)	45	0 (0.0%)	7	0 (0.0%)	35	
ADT	62 (47.7%)	130	39 (42.4%)	92	22 (62.9%)	35	
Chemotherapy	1 (0.8%)	130	1 (1.1%)	92	0 (0.0%)	35	

Table 1: Patient Characteristics

Values are presented as mean ± std. dev. or proportions. PC: prostate cancer; BR: biochemical recurrence; RP: radical prostatectomy; RT: radiation therapy; ADT: Androgen deprivation therapy; IMRT: Intensity-modulated radiation therapy. *Inclusion criteria; †Categories are not mutually exclusive.

Journal of Nuclear Medicine, published on April 12, 2019 as doi:10.2967/jnumed.119.226381

Journal of Nuclear Medicine, published on April 12, 2019 as doi:10.2967/jnumed.119.226381

Table 3:	Changes in	Treatment	Intent, Diseas	e Stage,	Investigation,	Decision-	Making or	Management Plan	1

	All inclu	ıded	BR post R	P only*	BR post RT only*		
Variable	Value	n	Value	n	Value	n	
Change in treatment intent	36 (65.5%)	55	21 (56.8%)	37	13 (86.7%)	15	
To Palliative	18 (50.0%)	36	10 (47.6%)	21	6 (46.2%)	13	
To Curative	18 (50.0%)	36	11 (52.4%)	21	7 (53.9%)	13	

Journal of Nuclear Medicine, published on April 12, 2019 as doi:10.2967/jnumed.119.226381

PSA-Stratified Performance of ¹⁸F- and ⁶⁸Ga-PSMA PET in Patients with Biochemical Recurrence of Prostate Cancer

Prostate-specific Membrane Antigen Heterogeneity and DNA Repair Defects in Prostate Cancer

Please cite this article in press as: Paschalis A, et al. Prostate-specific Membrane Antigen Heterogeneity and DNA Repair Defects in Prostate Cancer. Eur Urol (2019), https://doi.org/10.1016/j.eururo.2019.06.030

Design, setting, and participants: Membranous PSMA (mPSMA) expression was scored immunohistochemically from metastatic castration-resistant PC (mCRPC) and matching, same-patient, diagnostic biopsies, and correlated with next-generation sequencing (NGS) and clinical outcome data.

Conclusions: Membranous PSMA expression is upregulated in some but not all PCs, with mPSMA expression demonstrating marked inter- and intrapatient heterogeneity. DDR aberrations are associated with higher mPSMA expression and merit further evaluation as predictive biomarkers of response for PSMA-targeted therapies in larger, prospective cohorts.

Standard of Care Versus Metastases-directed Therapy for PET-detected Nodal Oligorecurrent Prostate Cancer Following Multimodality Treatment: A Multi-institutional Case-control Study

https://doi.org/10.1016/j.euf.2018.02.015 2405-4569/© 2018 European Association of Urology.

PSMA: Other potential uses

- Primary detection
- Monitor results of focal therapy or XRT
- Primary staging, eg, high-risk
- Therapy

German Multicenter Study Investigating ¹⁷⁷Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients

Kambiz Rahbar^{*1}, Hojjat Ahmadzadehfar^{*2}, Clemens Kratochwil³, Uwe Haberkorn³, Michael Schäfers¹, Markus Essler², Richard P. Baum⁴, Harshad R. Kulkarni⁴, Matthias Schmidt⁵, Alexander Drzezga⁵, Peter Bartenstein⁶, Andreas Pfestroff⁷, Markus Luster⁷, Ulf Lützen⁸, Marlies Marx⁸, Vikas Prasad⁹, Winfried Brenner⁹, Alexander Heinzel¹⁰, Felix M. Mottaghy¹⁰, Juri Ruf¹¹, Philipp Tobias Meyer¹¹, Martin Heuschkel¹², Maria Eveslage¹³, Martin Bögemann¹⁴, Wolfgang Peter Fendler^{†6}, and Bernd Joachim Krause^{†12,15}

J Nucl Med 2017; 58:85-90

First cycle

Second Cycle

PET scans for Biochemical Recurrence

- Detection rate dependent on PSA level
- FACBC seems to be more sensitive than Choline
- PSMA-based scans not approved in US
 - Possibly more sensitive for non-LR
- PET scans change treatment decisions
- Unknown whether such treatment changes make a difference in ultimate outcomes
- PSMA theranostic application under evaluation