Emerging Topics in Ureteroscopy: Pressure, Temperature and Suction

Seth K Bechis, MD, MS Associate Professor of Urology UCSD Comprehensive Kidney Stone Center

sbechis@health.ucsd.edu
@BechisUrology

Disclosures

- Consultant
 - Ambu
 - Auris
 - Boston Scientific
 - BD
 - Calyxo
 - Dornier
 - Olympus

- Speaker
 - Cook Medical
 - Karl Storz Endoscopy

Improving Goals of Ureteroscopy

- Faster surgery time
- Less postop pain (?stent)
- Lower complication rate (sepsis, ED rates)
- Better stone ablation/clearance (SFR)

Goals of Ureteroscopy

- Faster surgery time
- Less postop pain (?stent)
- Lower complication rate (sepsis, ED rates)
- Better stone ablation/clearance (SFR)

Goals of Ureteroscopy

- Faster surgery time
- Less postop pain (?stent)
- Lower complication rate (sepsis, ED rates)
- Better stone ablation/clearance (SFR)

Pressure

FIG. 1. Parenchymal splitting associated with high IRP. IRP=intrarenal pressure. Color images are available online.

³Dean & Krambeck. J Endourol 2023; 37;2. 2023

Pressure

- Ureteroscopy- 5-6% risk of urosepsis^{1,2}
- Ureteral access sheaths (UAS) reduce risk of sepsis (4.3% vs 15.2%)³
- Larger UAS and smaller ureteroscopes reduce intrarenal pressure⁴
- Higher pressure during PCNL associated with greater postop pain, hospital stay⁵

UC San Diego Health

¹Bhojani et al. BJU Int 132;2. 2023
²Bhojani et al. J Enrourol 35;7. 2021
³Traxer et al. WJU 33. 2015
⁴MacCraith et al. J Endourol 35;4. 2021
⁵Alsyouf et al. J Urol 199;1. 2018

Sepsis

Bacteria + High Pressure = Sepsis

- Pyelovenous backflow >30-40 cm H2O¹
- Higher pressure irrigation (200 vs 80 mm Hg) increases rates of SIRS after PCNL²
 - 46% vs 11%

AUA GUIDELINE STATEMENT³:

Clinicians should "make every effort to maintain low intrarenal irrigation pressure" to avoid the consequences of high intrarenal pressure (IRP) during endourologic procedures.

¹Tokas et al. WJU 37;1. Jan 2019 ²Omar et al. J Urol 196;1. July 2016 ³Dean & Krambeck. J Endourol 2023; 37;2. 2023

Ways to control pressure

- Nephrostomy tube
- Larger UAS (12/14 Fr)¹
- Smaller ureteroscope¹
- Intermittent scope removal²
- Controlling irrigation

Table 2. Comparison of Maximum Intrarenal Pressures (cmH_2O) Generated According to Ureteral Access Sheath and Ureteroscope Selection

Comparison	$IRP (mean \pm SD)$	p Value
No UAS <i>vs</i> 11/13F UAS	49.5±29.36 vs 32.73±35.66	0.02
11/13F UAS <i>vs</i> 12/14F UAS	32.73±35.66 vs 16.45±5.3	0.006
9.5F scope vs 8.7F scope	41.68±34.5 vs 24.1±21.24	0.001

¹MacCraith et al. J Endourol 35;4. 2021 ²Oratis et al. PLOS ONE 13;11. 2018

Controlling Irrigation

- Automatic Infusion Pumps
 - Not precise¹
 - Underestimated pressure
- Pressure bags
- Hand irrigation
 - Beware of strong hands!

¹De et al. J Endourol 28;5. May 2014

Intrarenal Pressure Can Now be Measured

Dr. Ben Chew @DrBenChew · Apr 28

First-in-human LithoVue Elite case done yesterday! I cannot wait to see clinical studies on intrarenal pressure and sequelae. @bsc_urology @EndoEDGE13

Following in the footsteps of @DrBenChew I am very proud to be one of the first to trial the new pressure monitoring LithoVue Elite scope from @bsc_urology The future is now!

Intrarenal Pressure Can Now be Measured

Ureteroscopy WITH UAS

Ureteroscopy WITHOUT UAS

Videos courtesy of Ben Chew, MD Bhojani N, Chew B et al. BJU Int 132. 2023.

Personal experience with IRP monitoring

- **Ongoing UCSD study**
- IRP at renal pelvis (Comet wire)
- 26 patients w/ UAS
 - 11/13Fr (13)
 - 12/14Fr (10)
 - 13/15Fr (3)
- **Baseline: before UAS insertion**

GOAL: maintain low IRP to reduce sepsis/complications

Pressure Mean (mmHg)

¹Finegan J, Katz J, Berger J, Bechis S, Mongha M, Sur R. WCET 2023 abstract, AUA 2024 abstract

Temperature

Temperature

- T >43°C \rightarrow protein denaturation
- T₄₃: time to induce cellular injury
- 0.5J x 80 Hz (40W) x 60 s

Irrigation	No	Medium	High
Peak Temp (° C)	84.8	63.9	43.6
T ₄₃ (sec)	12.7	17.8	

¹Aldoukhi et al. J Endourol 32;8. Aug 2018

Renal Temperature -- TFL

- In-vivo porcine kidney
- Measured intrarenal fluid and tissue temp
 - 0.5J x 80 Hz
 - 1J x 10 Hz
 - 1.5J x 20 Hz
- +/- 14F UAS
- Single vs Dual lumen ureteroscope
- Room temp vs warmed irrigation

UC San Diego Health

Okhunov et al. J Endo 2021. 35;11

Renal Temperature -- TFL

Laser Acti	vation Site	Fiber at U	pper C	alyx	Fib	er at l	nterca	lyx	Fibe	r at Lo	ower C	alyx	Fibe	r at R	enal P	elvis		
Scope Type	Irrigation	Lipper po Setting	Interpole	Ure pole	ateros co.	oper pol	Interpole	Ut por	ateros con	oper pol	Interpole	Ut por	ateros co.	ppet por	Interpole	Ut por	eterosco.	be
	Room	Dusting	44	38	36	46	38	46	41	48	36	36	53	43	36	37	51	38
	Tomp	Low Frag	37	36	36	36	37	41	37	39	37	36	42	37	36	36	36	33
Single Lumen	Temp.	High Frag	38	36	36	36	37	41	38	38	37	37	40	38	36	36	37	35
Ureteroscope		Dusting	44	39	36	53	44	54	40	70	36	37	52	51	36	38	53	54
Warm	Low Frag	40	37	36	44	45	50	42	69	37	38	46	42	36	36	41	40	
		High Frag	38	37	36	40	43	45	39	60	37	37	56	35	36	36	38	39
	Deem	Dusting	38	36	37	35	36	40	36	37	36	36	39	36	37	36	36	34
	Tomp	Low Frag	36	39	36	30	37	43	39	33	36	36	36	29	37	37	38	30
Dual Lumen	Temp.	High Frag	37	36	36	30	37	36	36	29	36	37	39	30	36	36	37	30
Ureteroscope		Dusting	45	44	36	42	37	52	36	35	37	36	45	35	36	37	50	36
	warm	Low Frag	33	36	37	35	36	40	36	35	37	36	38	39	37	36	36	36
		High Frag	41	36	36	36	37	42	36	35	37	36	42	44	39	36	36	39

Keep temp low: use sheath, room temp irrigation, and dual lumen URS Dust with caution!

Okhunov et al. J Endo 2021. 35;11

Laser Pedal Activation Time Affects Temperature

- Operator Duty Cycle (ODC) = lasing time/lithotripsy time
 40W with 50% ODC
 - for every 60 sec, 50% of time is on the pedal (total 30 sec)

TABLE 2. TIME TO THRESHOLD OF THERMAL INJURYAND THERMAL DOSE FOR DIFFERENT PATTERNSOF LASER ACTIVATION AND ROOM TEMPERATUREIRRIGATION AT 8 ML/MIN

Pattern of laser activation for 60 seconds	Time to threshold of thermal injury (seconds)	t ₄₃ thermal dose (equivalent minutes)
40 W applied with 50% ODC (30 seconds on/30 seconds off)	9	6813
40 W applied with 50% ODC (15 seconds on/15 seconds off)×2	9	1333
40 W applied with 50% ODC (10 seconds on/10 seconds off)×3	45	158
40 W applied with 50% ODC (5 seconds on/5 seconds off)×6	_	6
20 W applied with100% ODC	—	4

¹Aldoukhi et al. J Endourol 35;8. Aug 2021

Laser Pedal Activation Time Affects Temperature

- Operator Duty Cycle (ODC) = lasing time/lithotripsy time
 40W with 50% ODC
 - for every 60 sec, 50% of time is on the pedal (total 30 sec)

¹Aldoukhi et al. J Endourol 35;8. Aug 2021

TABLE 2. TIME TO THRESHOLD OF THERMAL INJURYAND THERMAL DOSE FOR DIFFERENT PATTERNSOF LASER ACTIVATION AND ROOM TEMPERATUREIRRIGATION AT 8 ML/MIN

Pattern of laser activation for 60 seconds	Time to threshold of thermal injury (seconds)	t ₄₃ thermal dose (equivalent minutes)
40 W applied with 50% ODC (30 seconds on/30 seconds off)	9	6813
40 W applied with 50% ODC (15 seconds on/15 seconds off)×2	9	1333
40 W applied with 50% ODC (10 seconds on/10 seconds off)×3	45	158
40 W applied with 50% ODC (5 seconds on/5 seconds off)×6		6
20 W applied with100% ODC		4

TFL vs Ho:YAG–Similar Ureteral Heat

- Ex-vivo porcine kidneys
- Antegrade URS/LL
- TFL vs p120
 - Fragmentation
 - 0.8J x 8 Hz
 - Dusting
 - 0.1J x 200 (TFL)
 - 0.3J x 70 Hz (p120)

Average Maximum Temperature Measured by Thermocouples in *ex vivo* Porcine Ureter (n=15-17)

UC San Diego Health

Okhunov et al. J Endo 2021. 35;11

TFL generates more heat during ureteral lithotripsy

- 3D printed model at 35.5°C
- 10 mm bego stone in ureter
- No UAS
- Room temp irrigation, 30cc/s
- Lasers 60s activation
 - 30W HoYAG
 - 100W HoYAG
 - 60W TFL

TFL generates more heat during ureteral lithotripsy

- 3D printed model at 35.5°C
- 10 mm bego stone in ureter
- No UAS
- Room temp irrigation, 30cc/s
- Lasers 60s activation
 - 30W HoYAG
 - 100W HoYAG
 - 60W TFL

UC San Diego Health

Belle et al. J Endo 2022. 36;9.

Controlling Temperature

- Ureteral access sheath
- Room temperature irrigation with flow on
- Short laser activation cycles
- <10W in ureter

Suction

Courtesy of Karen Stern. MD

Suction – CVAC[®] Aspiration System

Large vacuum lumen for effective stone removal

- 12 Fr outer lumen
- Deflectable
- Goes through 12/14Fr UAS
- Vacuum up to 2.5mm fragments
- Hand irrigation

Suction – CVAC[®] Aspiration System

Suction – CVAC[®] aspiration system is effective

Initial Safety and Feasibility of Steerable Ureteroscopic Renal Evacuation: A Novel Approach for the Treatment of Urolithiasis

Roger L Sur ¹, Shashank Agrawal ², Brian H Eisner ³, George E Haleblian ⁴, Arvind P Ganpule ⁵, Ravindra B Sabnis ², Mahesh R Desai ², Glenn M Preminger ⁶

Affiliations + expand

SURE group (n=9)Basket group (n=8)p Volume of stone removed at postoperative day 1, (mm³) 202 ± 94 (64–318) $91 \pm 42 (33 - 140)$ < 0.01% Stone volume removed at postoperative day 1, 0.022 $84 \pm 19 (37 - 100)$ 56 ± 24 (21-88) (% of baseline) Stone-free rate based on 30-day CT scan 100% 75% 0.20 295 ± 213 (125-673) Fluoroscopy time, seconds $318 \pm 120 (184 - 600)$ 0.78Procedure time, minutes $54 \pm 17 (30 - 80)$ 39 ± 22 (15–75) 0.13 Stone removal rate (mm³/min) $16.6 \pm 9.5 (6.0 - 35.9)$ $9.6 \pm 6.4 (2.0 - 22.0)$ 0.099

TABLE 3. PERIOPERATIVE OUTCOMES

Mean ± standard deviation (range).

UC San Diego Health

17 patients, RCT

• CT scan on day 1 and 30

Baseline stone volume 267 mm³

CVAC[®] vs. 210 mm³ (p = 0.55)

Suction – CVAC[®] Aspiration System

Initial Safety and Feasibility of Steerable Ureteroscopic Renal Evacuation: A Novel Approach for the Treatment of Urolithiasis

Roger L Sur ¹, Shashank Agrawal ², Brian H Eisner ³, George E Haleblian ⁴, Arvind P Ganpule ⁵, Ravindra B Sabnis ², Mahesh R Desai ², Glenn M Preminger ⁶

Affiliations + expand

Baseline stone volume 267 mm³ CVAC[®] vs. 210 mm³ (p = 0.55)

• CT scan on day 1 and 30

17 patients, RCT

	SURE group (n=9)	Basket group (n=8)	р
Volume of stone removed at postoperative day 1, (mm ³) % Stone volume removed at postoperative day 1, (% of baseline)	202±94 (64–318) 84±19 (37–100)	91±42 (33–140) 56±24 (21–88)	<0.01 0.022
Stone-free rate based on 30-day CT scan	100%	75%	0.20
Fluoroscopy time, seconds	318±120 (184-600)	295±213 (125-673)	0.78
Procedure time, minutes	54 ± 17 (30-80)	$39 \pm 22 (15 - 75)$	0.13
Stone removal rate (mm ³ /min)	$16.6 \pm 9.5 (6.0 - 35.9)$	$9.6 \pm 6.4 (2.0 - 22.0)$	0.099

TABLE 3. PERIOPERATIVE OUTCOMES

Mean ± standard deviation (range).

Suction – CVAC[®] works for large stones

- 43 patients
- Mean stone size
 29 ± 12mm

TABLE 3. STONE CLEARANCE								
	Total baseline	Total baseline	Total baseline	All patients with				
	Stone burden	stone burden	Stone burden	follow-up CT				
	10–20mm (n=6)	20–30 mm (n=6)	>30mm (n=12)	imaging (n=24)				
Stone clearance, % (mean \pm SD)	97.9 ± 3.0	98.9 ± 2.5	93.8 ± 11.5	96.1 ± 8.5				
Volume removed, mm ³ (mean \pm SD)	945.9 ± 559.3	2345.1 ± 1280.8	3382.3 ± 2088.1	2513.9 ± 1884.7				

Baseline stone burden stratification analysis among patients with follow-up CT imaging (n=24).

 Replacement for PCNL in morbid patients

UC San Diego Health

Stern et al. J Endo 2023. 37;11.

Suction – ClearPetra Ureteral Access Sheath

- Deflectable sheath
- Different sizes
 - 10/12 Fr, 11/13 Fr, 12/14 Fr.
- Irrigation via scope, aspiration between scope & sheath
- Aspiration adjusted by pressure vent on sheath
- Flexible tip pushed over scope, directed into calyx of choice by scope flexion

Other Suction Devices

FV-UAS 12/14Fr, Passive bending53 consecutive patientsStone burden 11 – 25 mm

Post-op CT on POD#1 and 1 month 37 (69.8%) - 100% stone free

Mean stone volume clearance rate: 97.7% (81.1%-100%)

Other Suction Devices

A Novel Distal Active Flexible Vacuumassisted Ureteric Access Sheath in Retrograde Intrarenal Surgery

Gaoyuanzhi Yue, Shangwen Dou, Chao Cai, Bangfeng Liu, and Yongda Liu

UROLOGY 179: 204–205, 2023.

- Case Report
- Distal active flexible vacuum-assisted ureteric access sheath (DAFV-UAS)
- 10 / 12.5 French
- 10 cm deformability at the tip
- Knob controls direction at the handle

Suction Takeaways

- Potential for higher stone free rates
- Pairs well with dusting
- Enables large stone removal in poor surgical candidates
- Room for improvements

Thank you!

Seth K Bechis, MD, MS sbechis@health.ucsd.edu @bechis@health.ucsd.edu Bechis@health.ucsd.edu

and the second