Stone Volume is a Better Predictor of Spontaneous Stone Passage

Seth K. Bechis, MD, MS Associate Professor of Urology

https://www.canpharm.com/blog/how-long-kidney-stone-to-pass

Department of Urology UC San Diego Health sbechis@health.ucsd.edu

Disclosures

- Consultant
 - Ambu
 - Auris
 - Boston Scientific
 - BD
 - Calyxo
 - Dornier
 - Olympus

- Speaker
 - Cook Medical
 - Karl Storz Endoscopy

Ureteral stone size is important for guiding management

19mm or 8mm

3mm

Ureteral stone size is important for guiding management

- Predicting spontaneous passage depends on stone size
- Stone size can also aid in surgical planning
- Current guidelines suggest using linear dimension (LD) as a surrogate for stone burden
 - Radiologist variability in reading CTs (depends on which view is used)

 BUT stone volume can vary despite similar linear size

Same linear dimension, different volumes

Same linear dimension, different volumes

What is the best way to measure stone burden?

- Formula-derived stone volume better than using maximal stone diameter to predict spontaneous passage
- Automated volume measurement was equally accurate but more precise compared to radiologists' variation
- Ellipsoid formula and automated algorithm are both effective to measure SV and correlate with stone passage

> J Endourol. 2016 Jan;30(1):32-6. doi: 10.1089/end.2015.0481. Epub 2015 Sep 9.

CT-Based Determination of Ureteral Stone Volume: A Predictor of Spontaneous Passage

Orhan Ünal Zorba¹, Sabri Ogullar², Selim Yazar¹, Gorkem Akca¹

> Eur Radiol. 2018 Jun;28(6):2474-2483. doi: 10.1007/s00330-017-5242-9. Epub 2018 Jan 24.

Prediction of spontaneous ureteral stone passage: Automated 3D-measurements perform equal to radiologists, and linear measurements equal to volumetric

Johan Jendeberg ¹, Håkan Geijer ², Muhammed Alshamari ², Mats Lidén ²

> Can Urol Assoc J. 2021 Mar;15(3):E144-E147. doi: 10.5489/cuaj.6491.

Utility of stone volume estimated by software algorithm in predicting success of medical expulsive therapy

Rajat Jain 1, Sara Maskal 2, Jason Milk 3, Leonard Kahn 4, Donald Fedrigon 3rd 2, Sri Sivalingam 5

Radiologists differ in their stone measurements

- Reader variations can significantly affect estimated probability for spontaneous passage
- Automated measurement may solve this problem

UC San Diego Health

Jendeberg J et al. Eur Radiology 28;2018.

qSAS automated stone volume assessment

- Quantitative Stone Analysis
 Software (qSAS) created by
 Mayo Clinic
- Semiautomated software generates standardized reports on stone diameter, location, and volume
- Adaptive threshold method enables identification of both pure and mixed stones
- Uses CT scans with 2-3mm cuts
 - UC San Diego Health

To evaluate whether program-estimated stone volume (SV) produces better spontaneous passage predictions compared to program-estimated maximal diameter (PD) and manually-measured maximal diameter (MD).

Hypothesis: the comparative advantage of SV would be more pronounced in the context of larger stones.

Design and Methods

- Retrospective: Emergency Department patients, 7/2017-4/2020
- Acute renal colic with single kidney/ureteral stone on non-contrast CT scan
- MD from radiology reports and manually measured
- Quantitative Stone Analysis Software (qSAS) for SV and PD estimation
- Outcome = spontaneous stone passage by 2, 4, 6 weeks (reported or by imaging)

SP patients had significantly smaller stones

SP – spontaneous passage
SV – stone volume
MD – manual diameter
PD – program diameter

	All patients (n=172)	Spontaneous passage (n=71)	Procedure (n=101)	р
Age (years) Female History of stones	53±16 66 (38) 73 (43)	51 ± 16 23 (32) 24 (34)	54 ± 15 43 (42) 49 (49)	0.14 0.21 0.061
No. of prior stones 0 1 2 >2	99 (57) 31 (18) 15 (9) 27 (16)	47 (66) 10 (14) 7 (10) 7 (10)	52 (51) 21 (21) 8 (8) 20 (20)	0.13
Side of stones Left Right	94 (55) 78 (45)	35 (49) 36 (51)	59 (58) 42 (42)	0.28 0.88 0.12
Radiologist-estimated stone diameter (mm) Program-estimated stone maximal diameter (mm) SV (mm ³)	6.5 ± 4 7.6 \pm 4 200 \pm 491	4.3 ± 2 5.5 ± 2 40 ± 40	8.0 ± 4 9.4 ± 4 312 ± 616	<0.001 <0.001 <0.001
Stone location Proximal Distal	89 (52) 83 (48)	11 (15) 60 (85)	78 (77) 23 (23)	<0.001
Mean HU Hydronephrosis	453 ± 160	347 ± 103	526 ± 151	<0.001
Mild Moderate	79 (61) 25 (20)	52 (77) 11 (16)	19 (33) 27 (44) 14 (23)	<0.001
Type of procedure SWL PCNL URS			21 (20) 13 (13) 67 (67)	

TABLE 1. BASELINE PATIENT AND STONE CHARACTERISTICS

SP patients had significantly smaller stones

SP – spontaneous passage
SV – stone volume
MD – manual diameter
PD – program diameter

- 172 patients in final cohort, 71 (41%) with SP, 101 (59%) requiring procedure
- No significant difference in age, sex (38%F), stone hx or laterality

Stone volume better predicts passage by 6 weeks

	AUC	P-Value
Stone Volume	0.92	
Program-measured Diameter	0.86	0.016 (SV vs PD)
Manually-measured Diameter	0.85	0.003 (SV vs MD)

SV – stone volume MD – manual diameter PD – program diameter

Stone volume better predicts passage of proximal ureteral stones

TABLE 3. AREA UNDER CURVE FOR PREDICTION OF SPONTANEOUS PASSAGE BY STONE LOCATION SUBGROUP

	Prediction of SP by 2 weeks			5
	Proximal	р	Distal	р
AUC: SV	0.89	Ref.	0.82	Ref.
AUC: PD	0.78	0.08	0.76	0.10
AUC: MD	0.81	0.02	0.82	0.96

Prediction of SP by 4 weeks

	Proximal	р	Distal	р
AUC: SV	0.93	Ref.	0.92	Ref.
AUC: PD	0.82	0.02	0.87	0.10
AUC: MD	0.85	0.02	0.89	0.35

Prediction	of SP	by 6	weeks
------------	-------	------	-------

Proximal	р	Distal	р
0.89	Ref.	0.93	Ref.
0.81	0.05	0.89	0.30
0.79	0.02	0.88	0.29
	Proximal 0.89 0.81 0.79	Proximal p 0.89 Ref. 0.81 0.05 0.79 0.02	Proximal p Distal 0.89 Ref. 0.93 0.81 0.05 0.89 0.79 0.02 0.88

SV – stone volumeMD – manual diameterPD – program diameter

p-Values use AUC:SV as referent.

Volume > linear diameter for predicting stone passage

Volume can help further differentiate passed stones

SP – spontaneous passage
SV – stone volume
MD – manual diameter
PD – program diameter

Volume best predicts passed stones for >6mm

Volume can help further differentiate passed stones

SP – spontaneous passage
SV – stone volume
MD – manual diameter
PD – program diameter

Volume best predicts passed stones for >6mm May reflect greater variability in shape (ie, football vs sphere)

Need better standardization of radiology reports

- Reports from CT scans performed for urolithoiasis:
 - 78% reported 1-dimensional stone diameter
 - 17% reported 2 dimensions
 - 3% reported 3 dimensions
 - 3% did not mention stone size!

Conclusions

- Software-calculated stone volume was a better predictor of stone passage than linear measurement (manual or automated) in patients presenting with acute renal colic, especially in the context of larger stones (>6mm)
 - Larger stones tend to have more variability in volume
- Computer-aided stone measurement may be a useful tool to standardize radiology reports
 - Eliminates variability in radiology reads
- Prospective studies are warranted to evaluate the clinical utility of stone volume in guiding patient expectations & treatment decisions.
 - Maybe best suited for larger stones
 - Surgical and outcomes planning for PCNL and URS

References

[1] Association AU, Society E. Surgical Management of Stones: AUA/Endourology Society Guideline In. American Urological Association 2016.

[2] Jendeberg J, Geijer H, Alshamari M, Cierzniak B, Lidén M. Size matters: The width and location of a ureteral stone accurately predict the chance of SP. Eur Radiol. 2017;27(11):4775-4785.

[3] Jendeberg J, Geijer H, Alshamari M, Lidén M. Prediction of spontaneous ureteral stone passage: Automated 3D-measurements perform equal to radiologists, and linear measurements equal to volumetric. Eur Radiol. 2018;28(6):2474-2483.

[4] Zorba O, Ogullar S, Yazar S, Akca G. CT-Based Determination of Ureteral Stone Volume: A Predictor of Spontaneous Passage. J Endourol. 2016;30(1):32-36.

[5] Patel SR, Wells S, Ruma J, et al. Automated volumetric assessment by noncontrast computed tomography in the surveillance of nephrolithiasis. Urology. 2012;80(1):27-31.

Thank you!

Seth Bechis, MD, MS Associate Professor of Urology Endourology Benign Prostatic Diseases

sbechis@health.ucsd.edu