The Association between Testosterone Treatment and Incident Cardiovascular Events Among Testosterone Deficient U.S. Veterans

THOMAS J. WALSH, MD

Email: walsht@uw.edu Mobile: 206.660.7634

Appointments: 206.520.5000

The 43rd Annual Ralph E. Hopkins Urology Seminar

Disclosure

Consultant:

- Coloplast
- Biote

Advisory Board:

- Boston Scientific
- Progyny

Research/Educational Funding:

- National Institutes of Health (NIA); 1R01AG042934-01: "Adverse Events Associated with Testosterone Treatment in Hypogonadal Men"
- Boston Scientific
- Coloplast
- Endo

66 year old man with decreased libido, mild erectile dysfunction and decreased energy

"I don't have the strength that I used to"

Testosterone 289 ng/dl (normal 348-1197ng/dl)
Free Testosterone 5.9 ng/dl (normal 6.6-18.1)
LH and Prolactin are normal
PSA 1.2 ng/dl
Hematocrit 45%

Would you treat him with testosterone?

Does testosterone treatment place this man at higher risk of cardiovascular disease?

FDA Statement

• [03-03-2015] The U.S. Food and Drug Administration (FDA) cautions that prescription testosterone products are approved only for men who have low testosterone levels caused by certain medical conditions. The benefit and safety of these medications have NOT been established for the treatment of low testosterone levels due to aging.

Testosterone therapy is appropriate treatment for patients with clinically significant hypogonadism, after full discussion of potential adverse effects

Evidence that testosterone treatment may provide BENEFIT to this man's health

Evidence that testosterone treatment MAY BE HARMFUL to this man's health

Evidence for the ABSENCE of risk that testosterone treatment is bad for this man's health

Evidence that testosterone treatment may provide BENEFIT to this man's health

Benefits of testosterone treatment

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

FEBRUARY 18, 2016

VOL. 374 NO. 7

Effects of Testosterone Treatment in Older Men

P.J. Snyder, S. Bhasin, G.R. Cunningham, A.M. Matsumoto, A.J. Stephens-Shields, J.A. Cauley, T.M. Gill, E. Barrett-Connor, R.S. Swerdloff, C. Wang, K.E. Ensrud, C.E. Lewis, J.T. Farrar, D. Cella, R.C. Rosen, M. Pahor, J.P. Crandall, M.E. Molitch, D. Cifelli, D. Dougar, L. Fluharty, S.M. Resnick, T.W. Storer, S. Anton, S. Basaria, S.J. Diem, X. Hou, E.R. Mohler III, J.K. Parsons, N.K. Wenger, B. Zeldow, J.R. Landis, and S.S. Ellenberg, for the Testosterone Trials Investigators*

Benefits of testosterone treatment

Placebo-controlled, double-blind, parallel-group randomized trials of 5 g of 1% Testosterone vs Placebo gel for 1 year

Primary outcomes

1) Sexual function 2) Physical function 3) Vitality

Findings:

- INCREASED SEXUAL ACTIVITY AND DESIRE
- IMPROVED ERECTILE FUNCTION
- IMPROVED PHYSICAL PERFORMANCE
- IMPROVED MOOD
- LOWER SEVERITY OF DEPRESSION

Evidence that testosterone treatment MAY BE HARMFUL to this man's health

Risk of testosterone treatment

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 8, 2010

VOL. 363 NO. 2

Adverse Events Associated with Testosterone Administration

- Efficacy NOT safety
- Adverse events were NOT adjudicated

Risk of testosterone treatment

Vigan (2013)

"use of testosterone therapy was associated with increased risk of mortality, MI and stroke"

JAMA, 2013; 310(17): 1829-1836

Finkle (2014)

"the risk of MI follow testosterone treatment is substantially increased"

PloS ONE, 2014; 9(1): e85805

Layton (2015)

"testosterone injections were associated with greater risk of CV events, hospitalizations, and deaths compared to gels"

JAMA Intern Med, 2015; 175(7): 1187-1196

Evidence for the ABSENCE of risk that testosterone treatment is bad for this man's health

Evidence for the absence of risk

Research

Original Investigation

Effects of Testosterone Administration for 3 Years on Subclinical Atherosclerosis Progression in Older Men With Low or Low-Normal Testosterone Levels A Randomized Clinical Trial

Shehzad Basaria, MBBS; S. Mitchell Harman, MD, PhD; Thomas G. Travison, PhD; Howard Hodis, MD; Panayiotis Tsitouras, MD; Matthew Budoff, MD; Karol M. Pencina, PhD; Joseph Vita, MD; Connie Dzekov, BS; Norman A. Mazer, MD, PhD; Andrea D. Coviello, MD, MS; Philip E. Knapp, MD; Kathleen Hally, BS; Emma Pinjic, MD, MPH; Mingzhu Yan, MD; Thomas W. Storer, PhD; Shalender Bhasin, MBBS

Testosterone's Effects on Atherosclerosis Progression in Aging Men (TEAAM)

- Placebo-controlled, double-blind, parallel-group randomized trial
- Testosterone vs Placebo gel for 3 years
- Primary outcomes:
 - 1. Common carotid artery intimal thickness
 - 2. Coronary artery calcium
- Findings
 - 1. NO DIFFERENCE IN PRIMARY OUTCOMES
 - 2. NO DIFFERENCE IN ADVERSE EVENTS

Similarly...

Research

JAMA Internal Medicine | Original Investigation

Association of Testosterone Replacement With Cardiovascular Outcomes Among Men With Androgen Deficiency

T. Craig Cheetham, PharmD, MS; JaeJin An, BPharm, PhD; Steven J. Jacobsen, MD, PhD; Fang Niu, MS; Stephen Sidney, MD, MPH; Charles P. Quesenberry, PhD; Stephen K. VanDenEeden, PhD

More evidence for the absence of risk

- Retrospective cohort study, 40 years and older, T< 300 or coded dx
- 8808 men ever-treated compared to 35,527 never-treated
- Composite cardiovascular outcome
- Propensity scores to account for clinical differences

- Decreased risk of composite CV event in ever-TRT treated men
- Results were consistent across all subcategories of CV event

Summary of T and CVD risk

There is evidence for the benefit of testosterone treatment in select men with hypogonadism

Evidence for the detrimental effects of testosterone is highly variable, and challenging to interpret

The VA Testosterone Treatment Study

A Pharmacoepidemiologic study of Veterans with low serum testosterone aged 40 to 89 years from 2002 to 2012

T Rex Study

Hypothesis

Treatment with exogenous testosterone may increase the risk of incident cardiovascular events.

- 1. Composite major event: myocardial infarction, stroke, thrombosis
- 2. Individual component events

Setting for Observational Study

Excellent setting in which to respond to testosterone treatment safety questions:

- 1. Large population of men (~8M users in a year)
- 2. National electronic health record
- 3. National prescription dispensing data
- 4. testosterone treatment relatively common
- 5. Can easily include CMS data
- 6. Uniformity of health care access

Study Cohort

Cohort of men with low serum testosterone

- 1. Men aged 40-89 years
- 2. Cohort entry at first lab measure of low endogenous T
- 3. Users of VA primary care: 2 or more outpatient visits in 12 months before cohort entry
- 4. Exclusion: histories of MI, VTE, stroke, prostate or breast cancer, PSA ≥4.0 ng/dL, T treatment prior to cohort entry, missing data: race, BMI, region

Basic Study Design

Outcomes

Primary:

Incident composite cardiovascular events

- ✓ Myocardial infarction
- ✓ Ischemic stroke
- ✓ Deep venous thromboembolism

Secondary:

✓ Incident individual outcomes

Exposure-Outcome Models

- Time-varying testosterone exposure as current use, former use, no use.
- All subjects were non-users at the time of cohort entry
- Current use for prescription duration plus 20% overrun
- Testosterone use continuously updated during the study
- Analysis by testosterone formulation

Bias: how to account for the differences between those who were and were not prescribed testosterone (confounding by indication)?

Possible remediation:

- Comparison of "current" to "former" users
- Characterization of baseline and emerging medical conditions (with continuous readjustment)

Adjustment for medical conditions

Baseline

- Age
- Race
- Region
- Year of cohort entry
- BMI
- Hospitalization
- Medical comorbidity
- Prevalent CVD

Time-varying Emergence

- Hospitalization
- Medical comorbidity
- Prevalent CVD

What is medical comorbidity?

- Chronic kidney disease
- Chronic lung disease
- Diabetes mellitus
- Erectile dysfunction
- Hospitalization in prior year
- Hyperlipidemia
- Hypertension

- Major depression
- Malignancy
- Morbid obesity
- Polycythemia
- Sleep apnea
- Smoking

Additional analyses: its all about the testosterone

- Sensitivity analysis: vary the overrun from 0% to 40%
- Compare event rates for men with continuous T treatment: 3, 6 and 12 months
- Exploratory case-cross over investigation for composite outcomes: allow subjects to serve as their own controls

Results

- 300,631 with low serum testosterone; of 204,857 after the application of exclusions
- Mean age 60.9 (9.9) years
 - Hypertension 62%; Diabetes 33%, obesity 62%, prevalent CVD 40%
- Testosterone Treatment
 - 28% received only transdermal T
 - 40% received only intramuscular T
 - 22% received both formulations of T
 - Median cumulative treatment time of 4.8 months for transdermal and 11.1 months for intramuscular users.

Baseline Characteristics of Men in the Analytic Cohort

	No use (122,302)	Initiated TD (43,502)	Initiated IM (39,053)
Age, y, mean	61.7	59.8	60.9
BMI, mean	31.5	32.6	32.8
Race, n (%)			
White	97,589 (79.8)	35,548 (81.7)	33,158 (84.9)
Black	21,102 (17.3)	6,722 (15.5)	4,609 (11.8)
Other	3,611 (3.0)	1,232 (2.8)	1,286 (3.3)
Prevalent CVD, n (%)	50,292 (79.8)	16,481 (37.9)	14,441 (37.0)
Arrhythmia	20,813 (17.0)	6,309 (14.5)	5,869 (15.0)
Cardiomyopathy	3,681 (3.0)	1,146 (2.6)	814 (2.1)
CAD or angina	32,055 (26.2)	10,390 (23.9)	8,914 (22.8)
Cerebrovascular disease or TIA	4,690 (3.8)	1,494 (3.4)	1,137 (2.9)
CHF	9,949 (8.1)	2,978 (6.8)	2,177 (5.6)
PVD	11,626 (9.5)	3,539 (8.1)	2,885 (7.4)
MI	3,904 (3.2)	1,127 (2.6)	900 (2.3)
Stroke, ischemic	1,800 (1.5)	490 (1.1)	342 (0.9)
VTE (DVT or PE)	1,175 (1.0)	388 (0.9)	248 (0.6)
No. of medical comorbidities, mean (sd)	4.8 (3.6)	4.7 (3.5)	4.5 (3.4)

Baseline Characteristics of Men in the Analytic Cohort

	No use (122,302)	Initiated TD (43,502)	Initiated IM (39,053)
Age, y, mean	62	60	61
BMI, mean	32	33	33
Race, %			
White	80	82	85
Black	17	16	12
Other	3	3	3
Prevalent CVD, %	80	38	37
Arrhythmia	17	15	15
Cardiomyopathy	3	3	2
CAD or angina	26	24	23
Cerebrovascular disease or TIA	4	3	3
CHF	8	7	6
PVD	10	8	7
MI	3	3	2
Stroke, ischemic	2	1	1
VTE (DVT or PE)	1	1	1
No. of medical comorbidities, mean	5	5	5

Serum Testosterone Levels

	Testosterone treatment status			
Total Testosterone Level (ng/dL)	No use (29,954)	Transdermal (5,953)	Intramuscular (7,337)	
Baseline, Mean (SD)	195 (105)	165 (81)	166 (71)	
Baseline, Median (IQR)	190 (145-230)	165 (119-210)	170 (125-210)	
Follow-up, Mean (SD)	276 (167)	312 (212)	455 (321)	
Follow-up, Median (IQR)	249 (182-330)	260 (173-399)	372 (215-620)	

Composite Cardiovascular Risk by Treatment Type Among men WITHOUT prevalent cardiovascular disease

Transdermal treatment				
Treatment	PY/1000	Events	IR	HR (95%CI)
Former	71.5	688	9.62	1.0 (ref)
Current	20.7	180	8.68	0.89 (0.76-1.05)
No use	332.2	3424	10.31	1.02 (0.94-1.11)
Intramuscular treatment				
Former	71.5	688	9.62	1.0 (ref)
Current	20.7	180	8.68	0.89 (0.76-1.05)
No use	332.2	3424	10.31	1.02 (0.94-1.11)

PY: person-years

IR: unadjusted incidence rate

HR: adjusted hazard ratio

CI: confidence interval

Composite Cardiovascular Risk by Treatment Type Among men WITH prevalent cardiovascular disease

Transdermal treatment				
Treatment	PY/1000	Events	IR	HR (95%CI)
Former	68.3	1415	20.73	1.0 (ref)
Current	16.1	254	15.74	0.80 (0.70-0.91)*
No use	299.0	6684	22.35	1.03 (0.97-1.09)
Intramuscular treatment				
Former	58.7	1250	21.29	1.0 (ref)
Current	31.1	596	19.16	0.98 (0.89-1.09)
No use	293.6	6507	22.16	0.96 (0.90-1.02)

PY: person-years

IR: unadjusted incidence rate

HR: adjusted hazard ratio

CI: confidence interval

*p<0.05

Interpretation

The use of testosterone does NOT appear to increase risk of composite cardiovascular events (MI, stroke, & DVT)

- Consistent for individual outcomes
- Consistent regardless of prevalent cardiovascular disease
- Consistent across treatment modality

Limitations

- Generalizability: the population of study US male veterans with a high degree of medical comorbidity
- Clinical indications for testosterone treatment were not known
- Cardiovascular outcomes and medical comorbidities were assessed by diagnostic codes, procedural codes, pharmacy, and laboratory data and not by chart review
- Observational study design
- Residual confounding

TRAVERSE Study — what's the answer?

- Three- year, multicenter, randomized, double-blind, placebo-controlled, noninferiority trial
- Specific intent to determine the cardiovascular safety of testosterone replacement.
 - 5,246 men aged 45 to 80 years
 - Symptoms of hypogonadism
 - T < 300 ng/dl
 - Treated to achieve serum T 350 to 750 ng/dl
- First occurance: MI, stroke, coronary artery revascularization

Lincoff, et al. NEJM, 2023, 389(2): 107-117

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 13, 2023

VOL. 389 NO. 2

Cardiovascular Safety of Testosterone-Replacement Therapy

A.M. Lincoff, S. Bhasin, P. Flevaris, L.M. Mitchell, S. Basaria, W.E. Boden, G.R. Cunningham, C.B. Granger, M. Khera, I.M. Thompson, Jr., Q. Wang, K. Wolski, D. Davey, V. Kalahasti, N. Khan, M.G. Miller, M.C. Snabes, A. Chan, E. Dubcenco, X. Li, T. Yi, B. Huang, K.M. Pencina, T.G. Travison, and S.E. Nissen, for the TRAVERSE Study Investigators*

"In men with hypogonadism and preexisting cardiovascular disease, TRT was noninferior to placebo with respect to the incidence of major cardiac events"

Lincoff, et al. NEJM, 2023, 389(2): 107-117

66 year old man with decreased libido, mild erectile dysfunction and decreased energy

Would you treat him with testosterone?

Acknowledgments

Funding: NIH/NIA RO1AG042934-01 (Walsh, Shores)

University of Washington

Susan Heckbert, MD, PhD

Mary Lou Thompson, PhD

SIBCR
Chloe Kinsey, BS

VA Puget Sound

Molly Shores, MD
Alvin Matsumoto, MD
Nicholas Smith, PhD
Christopher Forsberg, PhD
Chloe Krakauer, PhD
Kathryn Moore, PhD
Alexandra Foxe, BS
Steve Zeliadt, PhD

Questions

walsht@uw.edu