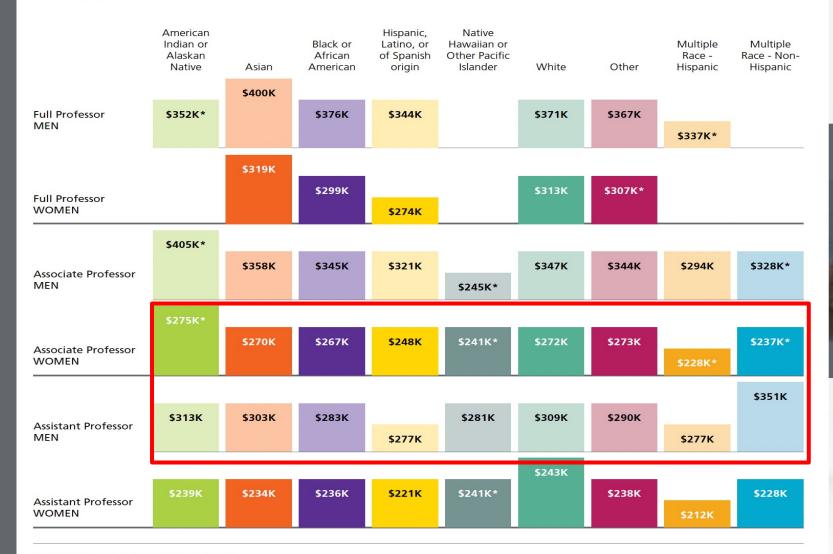


Gender Disparity in Urology Resident Surgical Experience?

O. Lenaine Westney, MD, FACS,FPMRS Professor


MDAnderson
Cancer Center

Making Cancer History®

Disclosures

- No Relevant Disclosures
- AMS/Boston Scientific Men's Health—
 - Consultant: Male Sling, AUS
 - Spouse: Male Health Regional Manager/Key Accounts
- Laborie
 - Data Monitoring Committee (ROBUST III Trial; PINNACLE)
- AUA Guideline Panels:
 - Incontinence after Prostate Treatment
 - Genitourinary Syndrome of Menopause (GSM)

FIGURE 19. Median compensation for clinical science MD faculty by race/ethnicity, gender, and rank.

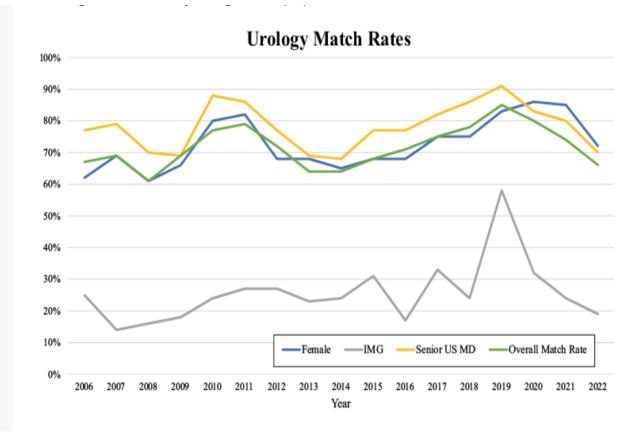

When the degree-type variable was added to the analysis, men of lower ranks with MD degrees, such as associate professor, had a higher total compensation than women at higher ranks, such as full professor, with the exception of Native Hawaiian or Other Pacific Islander men at the associate professor rank.

Source: FY 2020 AAMC Faculty Salary Survey.

Note: Data are not shown where groups had fewer than 10 individuals. *Sample size 10-19 people. In each row, the lowest dollar amount is in the smallest box, and the highest dollar amount is in the largest box. Dark shading, women; light shading, men. **REFER TO TABLE A.11 FOR SAMPLE SIZES.**

FIGURE 2-1

Total Number of Practicing Urologists and Percentage of Women Practicing Urologists in the Workforce from 2014 to 2022


Data sources: National Provider Identifier files and weighted samples from the AUA Annual Census from 2014 to 2022.

Blue: Total number of practicing urologists; Green: Percentage of women practicing urologists.

Objectives

- Surgical Log Terminology
- Intra-program Case Log Disparity
 - Examples from other surgical subspecialities
- Autonomy
- Self-Assessment
- Relationship to Census Data?

Urology Match Statistics

2024

	Total	Matched	Unmatched
Male	290	209 (72 %)	81 (28 %)
Female	203	173 (85 %)	30 (15 %)
Non Binary	6	2 (33 %)	4 (67 %)
Transgender	0	0	0
Undisclosed	1	1 (100 %)	0 (0 %)
Total	500	385 (77 %)	115 (23 %)

Current Match Classes

Operative Training

Surgical Log Terminology

To be recorded as **Surgeon**, a resident must perform **50** percent or more of the procedure, including a significant number of the critical steps. When two residents each complete one side of a bilateral procedure (e.g., orchidopexy, ureteral reimplant, nephrectomy), each resident may record the case as Surgeon.

To be recorded as **Assistant** surgeon, a resident must perform *less than 50 percent of the procedure and/or not the key portion(s) of the procedure.* Only one resident can claim credit as Assistant on a given procedure.

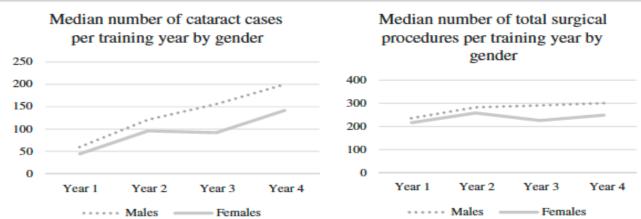
To be recorded as **Teaching Assistant**, the *chief or senior resident directs and oversees* major portions of the procedure being performed by a more junior resident surgeon, under the guidance of a supervising faculty member.

Urology Residency Case Minimums

Index Categories and Minimum Procedure Numbers

Category	Minimum
General Urology	250
Transurethral resection	100
Transrectal ultrasound (TRUS)/prostate biopsy	25
Fusion*	0
Scrotal/inguinal surgery	60
Urodynamic studies (UDS)	10
Endourology/Stone Disease	150
Ureteroscopy	90
Percutaneous renal procedure	10
Reconstructive Surgery	100
Male	30
Male penis/incontinence	15
Male urethra	5
Female	15
Intestinal diversion	10
Oncology	130
Pelvic	50
Pelvic-bladder	10
Pelvic-prostate	30
Retroperitoneal	50
Retroperitoneal-kidney	40
Pediatric-Minor	30
Endoscopy	5
Hydrocele/hernia	10
Orchiopexy	10
Pediatric-Major	15
Hypospadias	5
Ureter	5
Robotic	80

^{*}Residents will have the option of logging magnetic resonance imaging (MRI) fusion as part of a prostate biopsy. Fusion biopsy numbers will be tracked, but there is not a set minimum.


Definition of Programmatic Sufficient Surgical Experience

- Minimum numbers represent what the Review Committee believes to be an acceptable minimal experience.
- Surgeon, Assistant, and Teaching Assistant roles are included in the minimum counts.
- Minimum numbers are not a final target number and achievement does not signify competence.
- Program directors must ensure that residents continue to report their procedures in the Case Log System after minimums are achieved.
- Achievement of the minimum procedural requirements does not supplant the requirement that
 the summative evaluation verify a resident has demonstrated sufficient competence to enter
 practice without direct supervision.
- Programs are considered compliant with urology procedural requirements if all graduating residents in a program achieve the minimum number in each category.

Case Log Disparity

Existing Data for Case Log Disparity – Country Cohort

	Male	Female	p value
Total surgical cases at 18 months	340 (IQR 241.5-470)	313 (IQR 209-452.5)	0.500
Total surgical cases at 4 years	843.5 (IQR 490.5-1158.5)	665.5 (IQR 418.5-932.5)	0.036
Completed cataract cases at 18 months	111.5 (IQR 71-151)	87.5 (IQR 35-146.5)	0.022
Partial completed cataract cases at 18 months	68.5 (IQR 30-108)	87.5 (IQR 35-146.5)	0.858
Completed cataract cases at 4 years	369 (IQR 151-567)	216 (IQR 96-398)	< 0.001
Partial completed cataract at 4 years	95 (IQR 41.5-148.5)	78 (IQR 38.5-161)	0.847

Gill HK, Niederer RL, Danesh-Meyer HV. Gender differences in surgical case volume among ophthalmology trainees. Clin Exp Ophthalmol. 2021 Sep;49(7):664-671.

Large Scale General Surgery Program Consortium

TABLE 1. Individual and Program Demographics of General Surgery Residency Graduates by Male Versus Female

	N		
	Female	Male	P
Age (yr), median (IQR)	33 (31-34)	33 (32-35)	0.21
Race/ethnicity			0.05
Asian	75 (15.8)	136 (15.7)	
Black	30 (6.3)	35 (4.0)	
Hispanic	30 (6.3)	43 (4.9)	
White	325 (68.3)	598 (70.0)	
Other	16 (3.4)	55 (6.3)	
IMG	26 (5.5)	125 (14.4)	< 0.01
Dedicated research experience	235 (49.4)	355 (41.0)	< 0.01
Pursued fellowship	391 (82.1)	698 (80.5)	0.46
Resident volume			< 0.0
Low	173 (36.3)	270 (31.1)	
Medium	172 (36.3)	287 (33.1)	
High	130 (27.3)	310 (35.8)	
Program region			0.13
Midwest	130 (27.3)	272 (31.4)	
Northeast	76 (16.0)	98 (11.3)	
Southwest	85 (17.9)	156 (18.0)	
Southeast	167 (35.1)	303 (35.0)	
West	18 (3.8)	38 (4.4)	
Program size			< 0.0
Small	40 (8.4)	120 (13.8)	
Medium	224 (47.1)	402 (46.4)	
Large	212 (44.5)	245 (20.8)	
Residency volume			< 0.0
Low	184 (38.7)	247 (28.5)	
Medium	155 (32.6)	300 (34.6)	
High	137 (28.8)	320 (36.9)	
NIH funding			0.29
Top 50	266 (55.8)	452 (52.1.8)	
Bottom 50	112 (23.5)	206 (23.8)	
None	98 (20.6)	209 (24.1)	

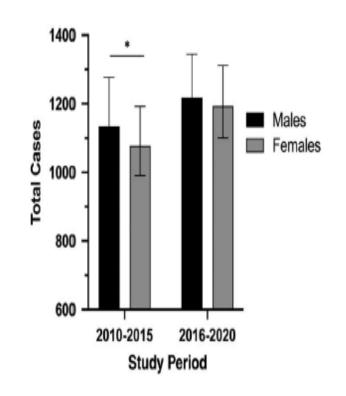
TABLE 3. Comparison of Operative Composition for General Surgery Residency Graduates by Male Versus Female

	Mediar		
	Female	Male	P
Abdomen	318 (277-371)	329 (278-386)	0.06
Biliary	125 (95–158)	131 (99–168)	0.03*
General	41 (30-53)	39 (28-52)	0.14
Hemia	123 (102-148)	126 (105-150)	0.29
Liver	9 (6–14)	9 (6–13)	0.95
Pancreas	11 (7–17)	12 (7–18)	0.35
Spleen	3 (1-4)	3 (1-4)	0.88
Alimentary tract	269 (228-308)	267 (225-313)	0.88
Anorectal	33 (25-44)	30 (22-41)	< 0.01*
Esophagus	11 (7–17)	12 (7–17)	0.61
Large intestine	147 (120-171)	148 (122-175)	0.36
Small intestine	40 (31–50)	39 (32–50)	0.88
Stomach	31 (23-45)	30 (22-43)	0.35
Breast	53 (42-71)	49 (39-64)	< 0.01*
Endocrine	38 (22–55)	37 (21–56	0.95
Endoscopy	119 (105-143)	124 (106-153)	0.02*
Pediatric	23 (16-31)	23 (17–33)	0.25
Plastics	24 (14-44)	25 (15-42)	0.78
Skin and soft tissue	56 (41–75)	54 (40–73)	0.20
Thoracic	32 (23-48)	37 (25–55)	< 0.01*
Transplant	12 (6–18)	11 (6–18)	0.46
Trauma	27 (18-40)	31 (20-47)	0.01*
Vascular	102 (78-133)	113 (86–151)	< 0.01*
Total laparoscopy†	279 (226-344)	287 (221-30)	0.48
Basic laparoscopy	171 (129–220)	179 (125–226)	0.39
Complex laparoscopy	107 (80-137)	108 (78–135)	0.90

^{*}P < 0.05.

Winer LK, Kader S, Abelson JS, et al. Disparities in the Operative Experience Between Female and Male General SurgeryResidents: A Multi-institutional Study From the US ROPE Consortium. Ann Surg. 2023 Jul 1;278(1):1-7. doi: 10.1097/SLA.0000000000005847. Epub 2023 Mar 30.

MD ANDERSON CANCER CENTER


[†]Laparoscopy includes operations within the other listed domains that are coded as open versus laparoscopic and, therefore, total laparoscopy is not counted toward total case counts.

Support for Resolution of the Discrepancy

TABLE 2. Multivariable Linear Regression Comparing Operative Volume for Male and Female Graduates

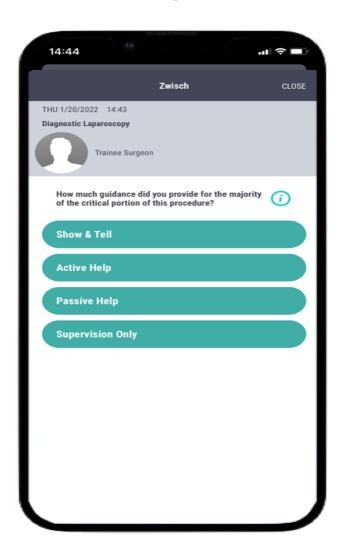
	Uı	nadjusted estimates		Adjusted estimates			
	Female	Male	P	Female	Male	P	
Total cases	1164 (1143-1184)	1181 (1171-1191)	< 0.01*	1197 (1171–1223)	1206 (1189-1223)	0.04*	
Total surgeon chief	271 (263–279)	272 (268–276)	0.71	289 (278-299)	287 (280-294)	0.03*	
Total surgeon junior	846 (823-865)	862 (853-871)	< 0.01*	866 (843-888)	875 (860-890)	0.01*	
Total TA	46 (42–49)	48 (46–49)	0.06	42 (38–47)	44 (41–47)	0.04*	

Data are reported as parameter estimates (95% CI) and are adjusted for an individual program, IMG status, completion of dedicated research, and pursuing a fellowship. *P < 0.05.

Winer LK, Kader S, Abelson JS, et al. Disparities in the Operative Experience Between Female and Male General Surgery Residents: A Multi-institutional Study From the US ROPE Consortium. Ann Surg. 2023 Jul 1;278(1):1-7. doi: 10.1097/SLA.000000000005847. Epub 2023 Mar 30.

Gender Disparity in Case Logs

Autonomy


Autonomy

- a pathway of progressive independence, beginning with skill development and progressing to independent decision-making with a goal of readiness for independent practice by the end of surgical training
- Influenced by bias
 - Implicit
 - Unintentional gender bias
- Zwisch Scale: Show and Tell > Active Help > Passive Help > Supervision Only

George BC, Teitelbaum EN, Meyerson SL, et al. Reliability, validity, and feasibility of the Zwisch scale for the assessment of intraoperative performance. J Surg Educ. 2014; 71(6):e90–e96. https://doi.org/10.1016/j.jsurg.2014.06.018.

Systematic Evaluation of Surgical Learning

- The Society for Improving Medical Professional Learning (SIMPL) is a 501(c)(3) non-profit international consortium of training programs working to implement a more evidence-based educational system.
- The three SIMPL questions are answered by both the trainee and faculty instructor, giving a comparative view of trainee progress.
 - Autonomy: 4 point
 - Performance
 - 9-point scale (1 = lacks basic surgical skills, 5 = performs basic steps, 9 = guides operation independently)
 - Case Complexity

Overall Autonomy Trends

- VA National Surgical Quality Improvement Program (VASQIP) 2004 to 2019 demonstrating a 62% decline in the surgeries primarily performed by residents across all surgical specialties
- In 2004, 44.3% of index urologic surgeries in the VA system were performed with the resident as the lead surgeon; 2019 dropped to 24.9%

T 1 1 1 D 1 C 11			L
Table 1. Percentage of cases with u	rology resident	as nrimary silrgeon	hy surgical procedure
Table 1. I ci celliage of cases with a	I DIOSY I CSIGCIIL	as prinnary surgeon	by surgical procedure.

RP (%)	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
TURP	31.2	31.4	29.5	27.3	25.0	25.6	26.2	25.9	28.5	26.6	25.8	26.8	26.0	23.6	21.2	18.1
TURBT (SMALL)	31.5	36.4	29.6	30.2	27.5	27.4	26.8	27.1	28.7	25.2	28.3	26.3	24.8	23.3	21.4	23.3
TURBT (MEDIUM)	35.4	29.5	32.4	26.0	27.0	25.8	26.7	29.4	30.4	28.8	28.0	27.4	27.5	25.8	23.1	22.9
TURBT (LARGE)	33.3	32.8	29.0	26.2	27.8	28.4	25.5	26.3	29.2	28.3	29.6	30.2	25.6	28.7	21.4	12.2
GLL	12.3	19.2	29.4	29.2	29.1	21.6	22.8	27.4	21.0	17.2	19.5	12.6	14.7	10.8	12.2	9.6
HYDROCELE	30.8	28.3	26.0	21.3	20.9	21.2	19.6	20.4	19.2	18.2	19.2	16.7	17.4	13.7	15.7	9.5
URETERAL STENT	43.8	21.9	29.8	20.8	25.2	33.8	19.7	26.3	22.4	22.2	30.0	26.0	27.7	18.2	13.4	17.7

Anjaria DJ, Kunac A, McFarlane JL, Oliver JB. A 15-year analysis of surgical resident operative autonomy across all surgical specialties in veterans affairs hospitals. JAMA Surg. 2022;157(1):76–8.

Hingu J, Nguyen A, Jain K, Anjaria D, Oliver J, Sadeghi-Nejad H. MP10-03: surgical autonomy of urology residents within the veterans affairs healthcare system. J Urol. 2022;207(Supplement 5):e146.

Nguyen AT, Anjaria DJ, Sadeghi-Nejad H. Advancing Urology Resident Surgical Autonomy. Curr Urol Rep. 2023 Jun;24(6):253-260. doi: 10.1007/s11934-023-01152-x. Epub 2023 Mar 14.

MD ANDERSON CANCER CENTER

Autonomy in General Surgery Training

Program, faculty, and resident participation

	Male residents	Female residents	Total
Program demographics			
Number of programs			14
Participating residents per program	$16.9 \pm 6.9 (6-29)$	$12.4 \pm 5.9 (3-21)$	29,4 ± 12,0 (11-48)
Participating faculty per program	26.8 ± 15.2 (4-62)	$10.5 \pm 3.6 (5-16)$	$37.4 \pm 17.4(10-75)$
Cases evaluated per program			636 ± 621 (46-2,343)
Faculty demographics			
Number of faculty	377	147	524
Cases performed by faculty (n [%] of total cases)	6,957 (78,2%)	1,943 (21.8%)	8,900 (100%)
Cases evaluated by faculty (n [%] of cases performed)	4,566 (65.6%)	1,301 (67.0%)	5,867 (65,9%)
Cases evaluated per faculty	$18 \pm 24 (1-216)$	$13 \pm 20 (1-174)$	17 ± 23 (1-216)
Number of faculty who did not respond to at least 1	110 (29,2%)	46 (31,3%)	156 (30,0%)
evaluation request $(n \ [\%] $ of faculty $)$			
Resident demographics			
Number of residents	238	174	412
Cases performed by residents (n [%] of total cases)	5,458 (61,3%)	3,442 (38,7%)	8,900 (100%)
Cases evaluated by residents $(n[%] \text{ of cases performed})$	5,062 (92,7%)	3,078 (89.4%)	8,040 (90,3%)
Cases evaluated per resident	23 ± 27 (1-184)	$20 \pm 25 (1-170)$	$22 \pm 26 (1-184)$
Number of residents who did not respond to at least 1	11 (4,6%)*	18 (10,3%)	29 (7.0%)
evaluation request $(n \ [X] $ of residents $)$			

Data are means ± standard deviation (range), unless otherwise indicated.

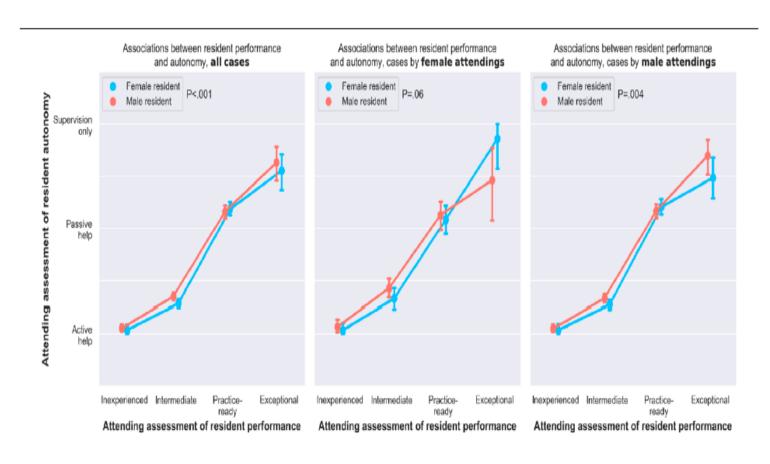
Meyerson SL, Sternbach JM, Zwischenberger JB, Bender EM. The Effect of Gender on Resident Autonomy in the Operating room.

J Surg Educ. 2017 Nov-Dec;74(6):e111-e118. doi: 10.1016/j.jsurg.2017.06.014. Epub 2017 Jun 29.

MD ANDERSON CANCER CENTER

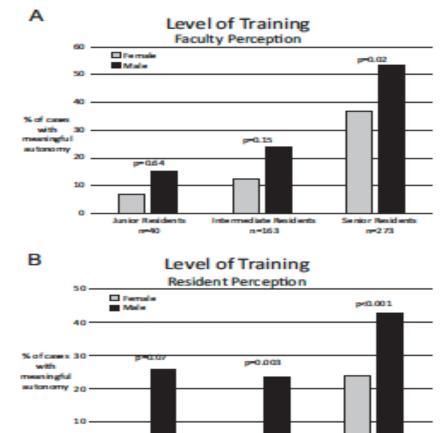
P < 0.001 male residents versus female residents.

Table IIEstimates of coefficients in a hierarchical logistic regression analysis of factors contributing to autonomy granted to residents in the operating room


	Attending surgeons' perceptions		Residents' perceptions	Residents' perceptions		
	Parameter estimate (confidence interval)	Statistical significance	Parameter estimate (confidence interval)	Statistical significance		
Level of training						
PGY 1	Reference		Reference			
PGY 2	1.47 (1.26-1.68)	P < .001	1,33 (1,10-1,55)	P < .001		
PGY 3	1,57 (1,38-1,76)	P < .001	1,56 (1,36-1,77)	P < .001		
PGY 4	2.44 (2.25-2.63)	P < .001	2,40 (2,21-2,60)	P < .001		
PGY 5	2.82 (2.62-3.02)	P < .001	2.67 (2.46-2.89)	P = .002		
Patient-related case complexity						
Easiest one third	Reference		Reference			
Average	-0.57 (-0.73 to -0.42)	P < .001	-0.40 (-0.57 to -0.23)	P < .001		
Hardest one third	-1.34 (-1.52 to -1.17)	P < .001	-0.88 (-1.07 to -0.69)	P < .001		
Case difficulty						
Advanced	Reference		Reference			
Core	1,25 (1,09-1,40)	P < .001	1,23 (1,06-1,40)	P < .001		
Resident sex						
Female	Reference		Reference			
Male	0.26 (0.15-0.37)	P < .001	0,30 (0.18-0.42)	P < .001		
Attending faculty sex	•		-			
Female	Reference		Reference			
Male	-0.77	P = .25	-0.09	P = .18		

The analysis of attending faculties' perception uses evaluation data submitted by attending faculty based on their perspective of the autonomy granted in the operation. The analysis of the residents' perception used evaluation data submitted by residents based on their perspective of the autonomy they received.

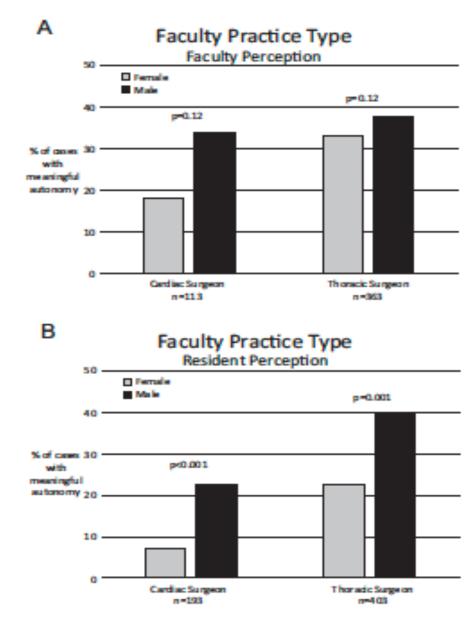
PGY, postgraduate year.


Mismatch between autonomy and performance

- SIMPL dataset from 54 general surgery residency programs from 2016-2021
- Male residents given more autonomy when adjusted for attending rated performance

Filiberto AC, Abbott KL, Shickel B, George BC, Cochran AL, Sarosi GA Jr, Upchurch GR Jr, Loftus TJ. Resident Operative Autonomy and Attending Verbal Feedback Differ by Resident and Attending Gender. Ann Surg Open. 2023 Feb 2;4(1):e256.

Thoracic Surgery

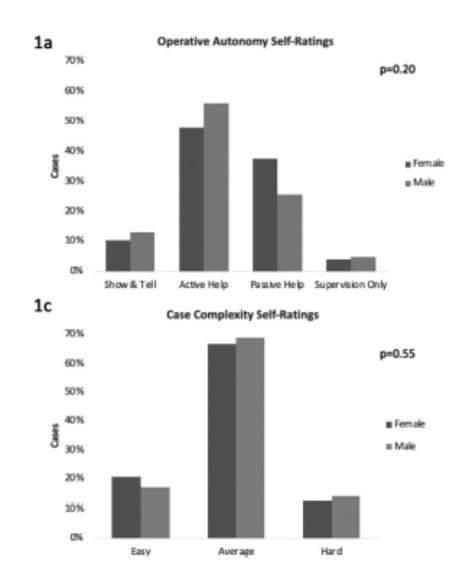


n=190

n=353

Junior Residents

pr 53



Miller BL, Azari D, Gerber RC, Radwin R, Le BV. Evidence That Female Urologists and Urology Trainees Tend to Underrate Surgical Skills on Self-Assessment. J Surg Res. 2020 Oct;254:255-260.

MD ANDERSON CANCER CENTER

What about Urology?

TABLE CILIDID	D 1:		
TABLE. SIMPL Participant	Demographics		
Rater's Sex	Female	Male	p Value
Faculty demographics			
Number of faculty	6	14	
Cases evaluated by faculty	76	164	
Median cases evaluated per faculty (IQR)	5 (3-13)	5.5 (2-9)	0.65
Resident demographics			
Number of residents	4	14	
Cases evaluated by residents	48	228	
Median cases evaluated per resident (IQR)	8 (6-18)	7 (3-17)	0.67
Surgery complexity per resident: Median (IQR)			
Low-complexity procedures	1.5 (0.5-4.5)	1 (0-2)	0.66
Medium-complexity procedures	5.5 (5-1 1)	5 (2-11)	0.67
High-complexity procedures	1 (0-3)	0 (0-2)	0.82

Olumolade OO, Rollins PD, Daignault-Newton S, George BC, Kraft KH. Closing the Gap: Evaluation of Gender Disparities in Urology Resident Operative Autonomy and Performance. J Surg Educ. 2022 Mar-Apr;79(2):524-530.

Self-Assessment

Self-Assessment

Self-assessment may influence:

- Surgical log role designation
- Projection of confidence with procedure >> Initial decision-making by faculty regarding expected skill level and degree of autonomy
- Gender differences in confidence and risk-taking behaviors
 - Socialization?
 - Hormonal?

Bucholz EM, Sue GR, Yeo H, Roman SA, Bell RH Jr, Sosa JA. Our trainees' confidence: results from a national survey of 4136 US general surgery residents. Arch Surg. 2011;146(8):907–14.

Example from Plastic Su

- Case evaluation data from 3 plastic surgery programs: Johns Hopkins, UNC & Baylor Scott and White
- OEA (Operative Entrustability Assessment) Scoring System for >8000 cases: Resident and

Attending

Table 2

OEA scoring system used for resident self-assessments and attending surgeon assessments of resident operative performance,

י ו	Numerical Score	Text Anchor	Long Definition
	Level 1	Demonstrative Guidance	The attending will need to perform the entire surgery with the resident assisting and observing.
	Level 2	Physical Guidance	The attending will be able to position the resident as the operator and the attending as the assistant to perform the surgery. The resident can be led motion by motion through the surgery.
	Level 3	Verbal Guidance	The attending will be able to discuss the case with or instruct the resident as the operator, but the resident will be able to mark and perform the surgery with the attending verbally assisting, advising, and correcting as necessary.
	Level 4	Supervisory Guidance	The attending will need to be present for the case to provide minor guidance if needed or requested; the resident will be able to perform the entire surgery.
	Level 5	Consultatory Guidance	The resident would be capable of performing the operation alone (guidance by the attending is not needed) or may lead a more junior resident through the surgery.

Unadjusted analysis of male and female residents' self-assessed operative performance compared to attending physicians' assessments.

Male Residents (n = 48)	# of assessments (%)	Mean	Delta	95% CI	P-value
Self-Assessment Attending Assessment	n = 6751 (83%)	3,57 3,48	0,09	3,55-3,60 3,46-3,51	P < 0,001
Female Residents $(n = 16)$	# of assessments (%)	Mean	Delta	95% CI	P-value
Self-Assessment Attending Assessment	n = 1398 (17%)	2,85 3,15	-0,30	2,80-2,91 3,08-3,20	P < 0,001

CI=Confidence interval.

Cooney CM, Aravind P, Lifchez SD, Hultman CS, Weber RA, Brooke S, Cooney DS. Differences in operative self-assessment between male and female plastic surgery residents: A survey of 8,149 cases. Am J Surg. 2021 Apr;221(4):799-803.

Table 1 – Demographics of study sample.					
Experience level	Female ($n = 17$)	Male (n = 20)			
Attending	5	5			
Senior resident (PGY 4-5)	4	6			
Junior resident (PGY 1-3)	2	3			
Medical student	6	4			
Retired	0	2			

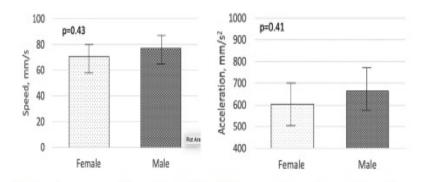


Fig. 2 - Computer motion analysis of simple interrupted suturing task by gender.

Table 2 — Mean individual difference of self and expert assessment scores (ΔSAS-EAS).


Gender, experience level	Economy of motion, mean ± SEM	Fluidity of motion, mean ± SEM		
Female	$-1.1 \pm 0.38 (P = 0.01)$	$-1.3 \pm 0.39 \ (P < 0.01)$		
Male	-0.16 ± 0.36 (P = 0.63)	-0.09 ± 0.41 (P = 0.82)		
Attending	-0.11 ± 0.65 (P = 0.87)	$-0.26 \pm 0.74 (P = 0.73)$		
Resident	-0.81 ± 0.40 (P = 0.06)	$-1.2 \pm 0.42 \ (P = 0.01)$		
Medical student	-0.73 ± 0.50 (P = 0.18)	-0.27 ± 0.50 (P = 0.61)		

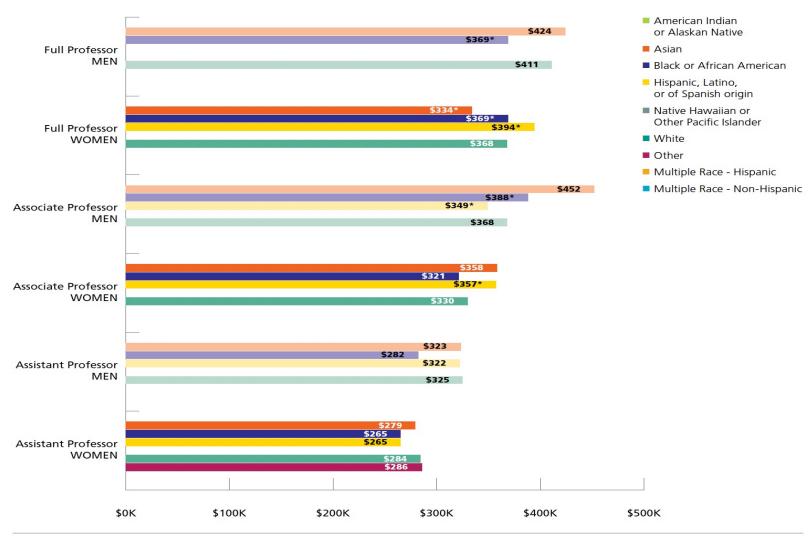
P-value role versus motion economy = 0.72; P-value role versus fluidity of motion = 0.52.

P-value sex versus motion economy = 0.09; P-value sex versus fluidity of motion = 0.04.

FIGURE 3-1

Percentage of Practicing Urologists With Completed Fellowship Training (by Gender and Age)*

Data source: Weighted samples from the 2022 AUA Annual Census.


Fellowship training is defined as participation in a fellowship program with a duration of one year or longer. *Bold numbers are point estimates. The dashed bars represent upper and lower 90% confidence limits.

Primary Practice Setting by Gender

	Male Practicing Urologists Represented			Female Practicing Urologists Represented			
Primary Practice Setting	Number	Percent (%)	+/- MOE (%)	Number	Percent (%)	+/- MOE (%)	
Private Practices	6,682	54.4	2.4	480	31.8	5.2	
Academic Medical Centers	3,210	26.1	2.1	682	45.2	5.7	
Public and Private Hospitals	2,008	16.4	1.8	275	18.2	4.7	
Other Settings^	381	3.1	*	72	4.8	*	
Total	12,281	100.0		1,509	100.0		

(Data source: Weighted samples from the 2021 AUA Annual Census.) Sums from numbers and percentages may contrast with calculated totals due to intrinsic rounding errors. ^ Other settings include federal, state or local government, industry (pharmaceuticals, EHR vendors, device manufacturers, etc.). *The estimated value should be used with caution due to small samples.

FIGURE 33. Median compensation for OB/GYN faculty with MD degrees by race/ethnicity, gender, and rank.

As reported in the AAMC
Faculty Roster, OB/GYN is the
department/specialty with the
most full-time URIM faculty
and with the most women.
Yet, when examining data
from this department/specialty
across MD faculty by race/
ethnicity, gender, and rank,
salary inequities existed.

Note: Data are not shown where groups had fewer than 10 individuals.*Sample size 10-19 people. Dark shading, women; light shading, men. **REFER TO TABLE A.18 FOR SAMPLE SIZES.**

Conclusions

There is evidence for gender-based disparity in:

- Residency case volume
- Case type distribution
- Autonomy
- Feedback

Further efforts to standardize training is warranted

- Programmatic self-evaluation
 - Reasons for case type imbalances exist but should be explained
 - Trainee Subspecialty Interest
- Faculty education
 - Formal instruction in evaluating key surgical procedures
 - Analysis of unintentional bias
- Resident feedback
 - Reconciliation of self-assessment and actual skill level

The next generation...

MDAnderson Cancer Center

Making Cancer History®