Richard E. Link, MD, PhD

Richard E. Link, MD, PhD

Baylor College of Medicine

Houston, Texas

Richard E. Link, MD, PhD, is a professor and board-certified and fellowship-trained urologist specializing in the treatment of urologic disease affecting the kidney, ureter, adrenal gland and prostate. Dr. Link holds the Carlton-Smith Endowed Chair in urologic education at the Baylor College of Medicine (BCM) in Houston, Texas and directs the BCM division of endourology and minimally invasive surgery. He serves as director of living donor procurement for several major kidney transplant programs in Houston, including Baylor St. Luke’s Medical Center, Texas Children’s Hospital, and the Houston Methodist Hospital. Dr. Link focuses on the use of laparoscopic, robotic-assisted, percutaneous, and endoscopic techniques to treat kidney and prostate tumors, benign prostatic hypertrophy, renal and ureteral obstruction, and urinary tract stones and has been an early pioneer in the development of laparoendoscopic single-site donor nephrectomy. Dr. Link earned both his MD and PhD in molecular and cellular physiology at Stanford University in California and completed an internship and residency at BCM before completing a fellowship at The Johns Hopkins University School of Medicine in Baltimore, Maryland. Dr. Link also has a strong interest in applying single site robotic technology using the da Vinci SP platform to retroperitoneal and transvesical urologic surgery. He has published numerous papers and earned many awards, including the Fulbright and Jaworski LLP Faculty Excellence Award for Teaching and Evaluation at BCM.

Disclosures:

Talks by Richard E. Link, MD, PhD

Why Should a Clinician Care About 3D Printing, VR Simulators and Genetically Engineered Animal Models for Kidney Cancer?

Richard E. Link, MD, PhD, discusses current challenges in the management of renal cell carcinoma (RCC), as well as research efforts to address these challenges. He specifically reviews 3D-printed models and virtual reality simulation for pre-surgical rehearsal and training, and an engineered animal model for identifying genetic targets in papillary RCC.

Read More
  • 1
  • 2

Join the GRU Community

- Why Join? -